Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катионная полимеризация центров

    Важнейшей отличительной особенностью полибутадиенов, образующихся при катионной полимеризации, является их низкая непредельность (30—70% от теоретической), наблюдаемая уже в начальной стадии процесса. Специфический характер вторичных реакций при катионной полимеризации объясняется тем, что активность внутренних двойных связен полимерной цепи по отношению к реакционному центру соизмерима с активностью мономера. На любой стадии процесса полимеризации протекает реакция внутримолекулярной циклизации, сопровождающаяся падением непре-дельности полимера [13]  [c.178]


    Обрыв цепи при катионной полимеризации — явление редкое. В отличие от радикальной полимеризации реакция обрыва цепи при катионной полимеризации имеет первый порядок относительно концентрации активных центров. Для некоторых систем гибель активных центров может наступать в результате взаимодействия макрокатиона с противоионом либо за счет перехода ионной связи в ковалентную, что наблюдается, например, при полимеризации стирола, катализируемой СРзСООН  [c.19]

    Реакция протекает с заметной большей относительной скоростью, чем другие реакции растущего центра. Предполагается, что концевые реакционноспособные ионные частицы в катионной полимеризации существуют в виде свободных ионов, ионных пар, ионных тройников [+ - +] или [-+-], квадруполей [ и более сложных агрегатов [119]. Реакции этих образований протекают в жидкой фазе, в которой большинство из них может координироваться с молекулами растворителя. В некоторых средах одни и те же ионные частицы находятся в двух или более различных координационных состояниях. Как следствие - в присутствии растворителя S в системе могут существовать в равновесии ряд различных типов АЦ  [c.85]

    Начальный ионный центр может быть как карбокатионом, так и карбанионом. Остановимся подробнее на механизме катионной полимеризации. [c.234]

    По типу активного центра, ведущего полимеризацию радикальная, анионная, катионная, полимеризация через комплексо-образование, [c.218]

    Активный центр катионной полимеризации может, в принципе, представлять собой карбониевый (I) или оксониевый (II) ионы, часто находяш,иеся в равновесии, которое регулирует их относительные концентрации в системе  [c.215]

    Вычислите относительную константу передачи цепи на растворитель (Сд) для катионной полимеризации, у которой [М ]о = /[1]о = 1,2- 10 моль-л , а активные центры постепенно обрываются вследствие взаимодействия с растворителем [c.120]

    При катионной полимеризации в растворе, в которой [М ]о =/[1]о = 2,9 - 10 моль-л , а необратимый обрыв является медленным и протекает в результате взаимодействия активных центров с молекулами растворителя (6,4 моль х хл ), концентрация мономера (1,2 моль-л ) уменьшается в два раза через 20 мин после начала полимеризации. Вычислите константу скорости роста цепи, а также скорость полимеризации и среднечисловую степень полимеризации в указанный момент времени, если = 8,1 - 10 л - моль с . [c.121]

    Катионная полимеризация, инициируемая катализатором, в начальный момент на 66 % превращающимся в активные центры, прекращается при степени конверсии 0,68. Единственная реакция обрыва — взаимодействие активных центров с ингибитором. Вычислите значения элементарных констант скорости, если даны начальные концентрации мономера (1,0 моль-л ), катализатора (3,6-10 моль-л ) и ингибитора (0,85 моль-л ) и начальная скорость полимеризации (8,8 моль - л - с ). Какова среднечисловая степень полимеризации по достижении предельной степени превращения  [c.121]


    Катионная полимеризация винилового мономера осуществляется до степени превращения мономера 85 %. Инициатор полностью превращается в активные центры в начале процесса. Обрыв цепи происходит за счет передачи цепи на растворитель ([8]о = 8,2 - 10" моль-л , Сз = 0,24 - 10 Через сколько времени после достижения 85 %-ной конверсии мономера содержание активных частиц в реакционной смеси составит 5- 10 моль-л если / = 1, [1]о = 5,0- 10 моль х X л , /Ср = 2,8 л - моль - с  [c.122]

    В условиях нестационарного режима катионной полимеризации альдегида скорость инициирования, описывается уравнением (2.32), скорость необратимого обрыва = = [М ] [М]. Выведите уравнение зависимости количества активных центров от констант скорости элементарных реакций, концентрации мономера и продолжительности полимеризации. [c.133]

    Таким образом, уже при рассмотрении общей картины образования полимеров изобутилена по схеме катионной полимеризации совершенно очевидны трудности в понимании тонкого механизма отдельных элементарных стадий. Прежде всего это относится к актам инициирования и роста полимерных цепей в малополярных углеводородных средах, отражающих высокую специфичность реакций образования и роста полимерных карбкатионов, отсутствующих в химии их низкомолекулярных аналогов. Малые эффекты внутренней стабилизации растущих ионов карбония с изобутиленовой структурой из-за отсутствия сильных электронодонорных заместителей у катионного центра обусловливают существенную роль сольватирующей (электростатической) функции мономера, несмотря на невысокие значения диэлектрической проницаемости (е = 2-3). Плохая в общепринятом смысле сольватация ионов карбония благодаря большим размерам ассоциатов не исключает, а предполагает эффективную внешнюю стабилизацию с помощью мономера, связанную с его нуклеофильной функцией. Важно подчеркнуть взаимосвязь электростатического и ковалентного связывания (или факторов жесткости и мягкости) в реакции ионов карбония с олефином. Стабилизация карбкатионов мономером, определяемая орбитальной координацией, связана с обратным упорядочивающим действием иона на молекулы мономера в его непосредственном окружении, ориентирующим их согласно электростатическому фактору. В совокупности это объясняет быстрый рост катионов в неполярных средах и наблюдаемые кинетические особенности реакции полимеризации. [c.109]

    Отличительной особенностью изобутилена является его высокая реакционная способность по отношению к катионным агентам, и, как следствие, весьма высокая (более 10 л/моль-с) константа скорости роста цепи [258, 259, 262. Это обусловливает очень высокую скорость полимеризации, сопровождающуюся выделением значительного количества тепла, которое, как правило, чрезвычайно трудно отвести из зоны реакции. По этой причине достаточно точное измерение скорости катионной полимеризации на основании изучения процесса полимеризации ИБ в кинетической области из-за трудностей в постановке корректных количественных опытов (в первую очередь, ввиду неизотермичности процесса) и отсутствия строгих экспериментальных данных о концентрации активных центров вряд ли кем было проведено. Поэтому с достаточным основанием можно констатировать, что имеющиеся в литературе сведения о [c.114]

    При катионной полимеризации возможен новый тип взаимодействия активного центра с макромолекулой — передача цепи с разрывом, который представляет собой реакцию замещения в основной цепи полимера. Передача цепи с разрывом интенсивно протекает при полимеризации циклических ацеталей, альдегидов, оксидов, лактамов, лактонов (У-гетероатом)  [c.281]

    Молекулярная масса продуктов катионной полимеризации часто невысока, что обусловлено передачей и обрывом цепи при взаимодействии активного центра с противоионом, мономером, полимером, растворителем и примесями. Наиболее заметное ограничение роста цепи при катионной полимеризации олефинов связано с высокой активностью карбкатионов. [c.493]

    Существование таких активных центров дает возможность предположить следующие конкурирующие механизмы в сюлах ДКГ с олигомерными смолами каталитическая (катионная) полимеризация по двойным связям олигомерных смол каталитическая (катионная) конденсация по кислотным группам с ввделением воды. [c.48]

    Таким образом, в смеси ДКГ с олигомерными смолами наиболее вероятно сочетание катионной полимеризации непредельных соединений, олигомерных смол и дегидратационной поликонденсавди сульфо-и карбоновых кислот кислых гудронов. Общим признаком этих разных процессов является их каталитическая природа. Регулируя степень проникания процессов изменением температуры, концентрацией реагентов и добавками солей металлов, щелочей, можно изменить количество ионов катализаторов и сульфокислотных групп - активных центров поликонденсации. Указанные приемы дают возможность получать материалы с широким диапазоном реологических и физико-механичес-ких свойств. [c.48]


    Пример 349. Катионная полимеризация гетероциклического соединения проводится в присутствии катализатора, количественно превращающегося в активные центры в начальный момент полимеризации. Обрыв цепи обусловлен взаимодействием активных центров с замедлителем, содержание которого значительно превышает содержание катализатора. Выве-дате уравнение зависимости степени превращения мономера от концентрации исходных веществ, констант скорости элементарных реакций и продолжительности реакции. Вьгчислите степени превращения для 5 и 10 мин полимеризации, если /Ср = 0,11 л моль с , /С2 = 8,1 10 л-моль с [1]о = = 7,8- 10 моль-л , [2]о = 0,19 моль-л . Определите среднечисловые степени полимеризации, соответствующие указанным моментам времени, при начальной концентрации мономера 1 М, [c.117]

    Влияние среды при проведении ионной полимеризации сводится в основном к стабилизации тех или иных форм образующихся ионизированных составляющих активного центра и к изменению реакционной способности активных центров. Стабилизация заряженных активных центров молекулами растворителя особенно важна при их возникновении, поскольку при этом компенсируются энергетические потери на гетеролитический разрыв химических связей при образовании инициирующих ионов. Изменение реакционной способности активных центров в различных средах зависит от полярности среды, специфической сольватации, сокаталитического действия растворителя. В катионной полимеризации доминирующим фактором является полярность среды. Обычно при увеличении полярности среды скорость катионной полимеризации и молекулярная масса образующегося полимера возрастают. Так, при полимеризации в системе стирол —5пСи —растворитель скорость реакции возрастает примерно в 100 раз, а молекулярная масса — в 5 раз при переходе от бензола (е = 2,3) к нитробензолу (е=36). [c.21]

    Ионная полимеризация может характеризоваться значительно большей стереоспецифичностью, чем радикальная. Это обусловливается не только взаимодействием заместителей концевых звеньев растущих полимерных цепей, но и участием в элементарных актах роста других компонентов каталитического комплекса, в частности, противоиона. Если активным центром на конце растущей цепи является ионная пара, то противоион оказывается одним из компонентов переходного комплекса, образующегося в реакции роста цепи. Поэтому он может влиять на фиксацию той или иной пространственной конфигурации, концевого звена растущей цепи. В некоторых случаях влияние противоиона, по-видимому, сводится к чисто стерическим эффектам, т. е. можно рассматривать противоион как своеобразный дополнительный заместитель в концевом звене растущей цепи. Например, при катионной полимеризации винилизобутилового эфира на катализаторе ВРз-НаО (противоион ВРзОН-) при —70°С образуется атактический полимер, при полимеризации в тех же условиях на катализаторе ВРз-(С2Н5)20 противоион ВР3ОС2Н5) образуется изотактический полимер. Увеличение объема противоиона значительно усиливает стереоспеци-фический эффект при росте цепи. [c.26]

    Ионная полимеризация также проходит через стадию образования активных центров, роста и обрыва цепи. Роль активных центров в этом случае играют анионы и катионы. Соответственно различают анионную и катионную полимеризацию. Инициаторами катионной полимеризации служат электроноакцепторные соединения, в том числе протонные кислоты, например H2SO4 и НС1 неорганические апротонные кислоты (Sn U, [c.353]

    Катионная полимеризация. Катионная полимеризация протекает в присутствии сильных кислот или таких катализаторов, как фтористый бор ВРд, бромистый алюминий А1Вгд, хлористый алюминий А1С1з и т. п. Катализаторы этого типа — сильные акцепторы электронов Активные центры при катионной полимеризации появляются в результате возникновения положительного заряда у одного из углеродных атомов молекулы мономера. Прн этом образуется карбкатион (ион карбония). Например, полимеризация изобутилена в присутствии фтористого бора и прн участии (в качестве сокатали-затора) воды протекает следующим образом. Фтористый бор образует с водой комплексное соединение [c.450]

    Катионная полимеризация. Возникновение активного центра при катионной полимеризации связано с потерей одним атомом углерода электрона и образованием карбониевого иона. [c.81]

    Полимеризация, в результате которой получаются стереорегулярные полимеры, называется стереоспецифи-ческой. Она происходит ио ионному механизму. Ионная полимеризация возбуждается катализаторами, а активными центрами ее являются ионы. Различают катионную и анионную полимеризацию. При катионной полимеризации в качестве катализаторов используются соединения с сильно выраженными акцепторными свойствами (Т1Си, А1С1 ), ВРз и др.). Так иолучают, наиример, иолиизобути-лен. Полярность молекулы изобутилена облегчает образование катиона карбония [соединения с атомом углерода (П1), несущим положительный заряд], являющегося активным центром процесса. [c.475]

    При исследовании катионной полимеризации углеводородных мономеров важное значение имеет решение вопроса о природе активного центра полимеризации. Показано, что при использовании в качестве катализатора сильных кислот Льюиса, какой является трибромалюминий, в процессах низкотемпературной полимеризации реакции передачи цепи практически не протекают, а скорость реакции обрыва зависит от природы основания Льюиса и соотношения кислота/основание, что позволяет найти оптимальные условия для проведения полимеризационного процесса по типу живых полимерных цепей. Это дает возможность получать олигомеры с концевыми атомами хлора, способного легко замещаться на другие функциональные группы. [c.115]

    Катионная полимеризация мономера 25 инициируется координацией инициатора, РР5, с кислородным атомом ангидро-цикла, что ведет к оксони-евому иону 26. Последний своим электрофильным центро.м, С-1, атакует другую молекулу 25 по кислороду ангидро-цикла с образованием нового ок-сония, 27, являющегося уже производным дисахарида. Повторение такого процесса приводит к последовательному наращиванию цепи путем стереоспецифического формирования глюкозидных связей (стереоспецифичность обеспечивается обращением конфигурации при С-1 в каждом таком акте раскрытия ангидро-цикла мономера 25), Понятно, что сама природа используемой реакции и структура мономера определяют необходимые стерео- и регио специфичность полимеризации, Дебензилирование образующегося таким путем полимера 28 дает целевой полисахарид 23. [c.296]

    ПОЛИМЕРИЗАЦИЯ (аддиционная полимеризация), синтез полимера путем последоват. присоединения молекул низкомол. в-ва (мономера) к активному центру, находящемуся на конце растущей цепи. В П. вступают соед., содержащие кратные связи С = С, С = С, С = 0, С = М и др., либо способные раскрываться циклич. группировки (окиси олефинов, лактоны, лактамы и др.). По числу участвующих в р-ции мономеров различают гомополимеризацию (один мономер) и сополимеризацию (два и более). В зависимости от природы активного центра выделяют радикальную полимеризацию (активный центр — своб. радикал) и ионную полимеризацию (ион, ионная пара или ноляризов. молекула см. Анионная полимеризации, Катионная полимеризация). Важная разновидность II.— стереоспецифическая полимеризация, при к-рой образуются полимеры с высокой степенью упорядоченности пространств, строения. [c.462]

    ПОЛИМЕРГОМОЛОГИ, см. Высокомолекулярные соединения. , , ПОЛИМЕРИЗАЦИЯ (от греч. polymeres-состоящий из многих частей), процесс получения высокомолекулярных соединений, при к-ром молекула полимера (макромолекула) образуется путем последоват. присоединения молекул низкомол. в-ва (мономера) к активному центру, находящемуся на конце растущей цепи. По числу участвующих в р-ции мономеров П. разделяют на гомополимеризацию (один мономер) и сополимеризацию (два и более), в зависимости от природы активного центра-на радикальную полимеризацию, в к-рой активным центром является своб. радикал (макрорадикал), и ионную П., где активные центры-ионы, ионные пары или поляризов. молекулы (см. Анионная полимеризация, Катионная полимеризация. Координационноионная полимеризация). Важный вид П.-стереоспецифиче-ская полимеризация, при к-рой образуются полимеры с упорядоченной пространств, структурой (стереорегулярные полимеры). [c.637]

    Рассмотрение известных катализаторов и различных схем инициирования предопределяет целесообразность общего подхода к инициированию процессов электрофильной полимеризации с позиций теории кислотно-основно-го взаимодействия. Инициириующие свойства электрофильных катализаторов определяются мерой кислотных свойств, так как катионная полимеризация представляет собой своеобразную последовательность актов, протекающих по принципу нейтрализации кислоты (активный центр) основанием (мономер) [30,31]. Подобные взаимодействия можно классифицировать как частный случай кислотно-основных взаимодействий в неводных средах, причем конкретная природа кислоты (Льюиса, Бренстеда или их комбинация) и основания (мономер, электронодонорный растворитель) определяют специфику процессов. [c.41]

    Слабые твердые кислоты относятся к числу наиболее стабильных возбудителей катионной полимеризации в интервале 320-575 К, что связано с отсутствием в их структуре лабильных группировок. Активность кислот в процессах олигомеризации олефинов невысока [39]и сильно зависит от состава катализатора и условий его приготовления[40]. Идентификация кислотных центров позволяет отнести слабые твердые кислоты к комплексным катализаторам. Например, на дегидратированной поверхности А12О3 присутствуют координационно-ненасыщенные атомы А1-льюисовские кислотные 2-центры, которые в присутствии воды (остаточной или введенной) способны переходить в комплексные бренстедовские кислоты  [c.45]

    При катионной полимеризации, например, с серной кислотой процесс заключается в следующем на начальной стадии инициирования при взаимодействии органоциклосилоксана с серной кислотой протон кислоты атакует атом кислорода силоксанового цикла. В результате перераспределения электронной плотности связь 31—О разрывается с раскрытием цикла и образованием активного центра на конце цепи  [c.182]

    Как видно из сопоставления этих рядов, и при радикальной и при анионной сополимеризации наименьшую активность имеют мономеры с электронодонорными заместителями, такими, как п-ОСНз (она особенно низка для анионной сополимеризации). Положительное значение р, найденное по уравнению Гаммета — Тафта, указывает на нуклеофильный, электронодонорный характер реакционного центра на макрорадикале или макроионе, проявляющийся сильнее при анионном процессе, чем при радикальном. Для катионной полимеризации наблюдается обратная картина р<0 вследствие электроноакцепторного характера растущего катиона, и наибольшая активация мономера создается электроноакцепторными заместителями, такими, как МОд. Аналогичная зависимость наблюдается и при анионно-коордннационной сополимеризации. -- [c.203]

    Норборнен (НБ) может полимеризоваться по трем направлениям с раскрытием связи С=С (винильная или аддитивная полимеризация), с раскрытием связи С=С и переносом активного центра (характерно для катионной полимеризации) и с раскрытием цикла, приводящим к образованию ненасыщенного полимера. [c.29]

    Существует большое число реакций полимеризации, протекающих по цепному механизму с заряженными цепными центрами [4]. Такими центрами могут быть карбониевые ионы или карбаиионы. Там, где выбор невозможен, как в случае различных виниловых соединений, возможно [4], что мономеры с электрофильными заместителями полимеризуются по свободнорадикальному или карбанионному механизму, а мономеры с нуклеофильными заместителями— через карбониевый ион (см. стр. 396). Однако заряженный цёнтр может поляризовать мономер легче, чем это делает свободный радикал, так что реакции развития цепи для заряженных центров могут быть энергетически более выгодными, чем свободнорадикальные реакции [69]. Так, реакции ионной полимеризации, вероятно, имеют более низкие энергии активации развития цепи, хотя они имеют также и более низкие предэкспоненциальные множители. Константы скоростей отдельных стадий ионной полимеризации не измерялись, но, как показывают данные табл. 42, общая энергия активации для многих реакций катионной полимеризации очень мала. Имелись сообщения об отрицательных величинах энергии активации, что резко отличается от свободнорадикальных реакций полимеризации. Кроме того, наблюдается большее разнообразие законов скорости. [c.428]


Смотреть страницы где упоминается термин Катионная полимеризация центров: [c.144]    [c.97]    [c.381]    [c.2249]    [c.406]    [c.410]    [c.341]    [c.464]    [c.130]    [c.378]    [c.222]    [c.146]    [c.156]    [c.441]   
Кинетический метод в синтезе полимеров (1973) -- [ c.234 , c.236 ]




ПОИСК





Смотрите так же термины и статьи:

Катионная полимеризация



© 2024 chem21.info Реклама на сайте