Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плутоний электронная структура

    Плутоний — искусственный радиоактивный элемент. Известны 15 изотопов плутония от Ри до Ри. Наиболее важен для практики изотоп Ри ( /2 = 2,4-Ю" лет). Электронная структура в соответствии с электронной структурой следует ожидать степеней окисления от - -2 до -f8, однако соединения со степенью окисления - -8 неизвестны. Наиболее характерна степень окисления - -4. Компактный плутоний медленно окисляется на воздухе, порошкообразный металл пирофорен. Медленно [c.406]


    Рассматривая электронные структуры этого ряда элементов можно отметить несколько основных закономерностей. Во-первых, заполнение оболочки 5/, вероятнее всего, не начинается с тория. Торий является типичным представителем переходного-ряда 6 -элементов и аналогом Ъх и Н(. Во-вторых, последующие элементы, начиная с протактиния и кончая плутонием, образуют смешанные электронные структуры 5/6 . Эти структуры отличаются от 4/ б бх -электронных структур соответствующих им по актинидной теории лантанидных элементов. Следует, кроме того, учесть, что электронная конфигурация атомов в газообразном состоянии необязательно должна соответствовать электронной конфигурации элементов в твердом состоянии. [c.15]

    Сначала короткое замечание относительно электронных структур актиноидов. Точно не известно, появляется ли 5/-электрон впервые у тория, однако доказано, что у кюрия (Z = 96) в структуре содержится семь 5/-электро-нов, т. е. 5/-подоболочка заполняется у него наполовину. Конфигурации тяжелых актиноидов еще неизвестны. Но оставим в стороне вопрос о расположении электронов и рассмотрим свойства актиноидов. Торий действительно похож на церий, но на этом сходство элементов-аналогов двух редкоземельных семейств надолго прекращается. У протактиния мало общего с празеодимом, уран не похож на неодим, нептуний — на прометий, плутоний — на самарий, америций — на европий. Основная валентность у легких актиноидов отнюдь не 3-1-, что характерно для целого ряда лантаноидов у тория она 4-Ь, у протактиния 5- -, у урана 6+, у нептуния 5- -, у плутония 4-Ь лишь у америция и кюрия валентность 3+ становится основной, но для кюрия, например, широко известны двуокись и тетрафторид, что недоступно его аналогу — гадолинию. Трехвалентные же производные большинства легких актиноидов, как правило, неустойчивы они становятся основными лишь у тяжелых актиноидов. На схеме приведено сравнение валентных состояний актиноидов и лантаноидов  [c.193]

    Это, пожалуй, единственный случай, когда реакция, при которой происходит изменение структуры иона плутония, т. е. реакция (7.2), протекает быстрее, чем реакция простого электронного перехода (7.1). [c.174]

    Для и, Ыр и Ри характерна большая склонность к образованию ионных ассоциатов в водных растворах по донорно-акцепторному механизму. Наблюдаемые многообразие и сложность состава этих ассоциатов обусловлены высокой координационной емкостью (14 и выше) актинидов вследствие наличия в структуре их электронных оболочек валентных электронов в состоянии 5/ и множества пустых 5/-орбит. Для изучения комплексообразования актинидов, в том числе и плутония в водных растворах, щироко применяются методы растворимости, ионного обмена, экстракции, спектрофотометрии и потенциометрии. [c.484]


    Все актиниды, за исключением актиния, характеризуются заполнением уровня 5/ в электронной оболочке, что определяет подобие их физико-химических свойств. Кроме системы и—51 и отдельных сведений о силицидах тория, нептуния и плутония, никаких данных о системах, образованных элементами 5/ с кремнием, не имеется. Это лишает возможности указать общие закономерности, имеющие здесь место. Большие и сравнительно близкие по величине радиусы атомов таких элементов при металлической и ковалентной связи [620] должны определять сложность строения диаграмм состояния силицидных систем, особенно в областях, бедных кремнием. Диаграмма состояния системы и— 51 является примером. В то же время области, богатые кремнием, должны иметь простое строение, так как структура силицидов в указанных системах определяется прежде всего типом укладки металлических атомов. Это положение также подтверждается имеющимися экспериментальными данными. [c.214]

    Электронные спектры поглощения этих соединений при температуре жидкого азота характеризуются заметным различием в структуре и расположении основных полос, что свидетельствует об изменении координационной сферы плутония. [c.326]

    На рис. 44 а и 446 приводятся спектры поглощения водных растворов лантанидов и актинидов. Совершенно очевидно сходство спектров тех и других элементов. Характерные спектры поглощения с резкими полосами в видимой области отмечены также для водных растворов четырех- и пятивалентного нептуния и высших валентностей плутония. Лишь для шестивалентного нептуния полосы в спектре поглощения отсутствуют, что опять подтверждает положение нептуния как четвёртого актинида. В самом деле, структура наружных оболочек нептуния (если заполнение 5/-мест начинается с тория) должна иметь вид 5/ 6(178 , а в соединениях шестивалентного нептуния из семи перечисленных электронов наружных оболочек шесть связано, и остаётся лишь один /-электрон. Поэтому, естественно, пропадают полосы, связанные с взаимодействием по меньшей мере двух /-электронов. [c.154]

    Причиной указанной выше смены полиморфных модификаций с повышением температуры является, по-видимому, увеличение энергии электронов. Сначала оно приводит к разрушению двухэлектронных направленных связей и образованию газа из электронов, принадлежащих всей решетке металла, что означает переход от ковалентных структур к металлическим а - р-превращение олова) и ковалентно-металлических сложных структур к плотным кубическим структурам металлов (а,Р у-превращения марганца, а,р у-превращения урана и нептуния, а,р,у -> 0-превраще-ния плутония). Та же причина приводит к уменьшению эллиптичности ионов с внешними -электронами и к переходу вследствие приближения внешней симметрии ионов к сферической, от плотных гексагональных к плотным кубическим упаковкам (а р-превращения лантана и кобальта, Р у 1Р РаЩ ние церия) и к превращениям плотных упаковок в последовательности гекс. магния -> гекс. а-лантана -> ромб, а-самария ГЦК типа меди. Наконец, при наиболее высоких температурах, близких к температурам плавления, металлы I—IV групп, включая лантаноиды и актиноиды, в результате перекрытия и обменного взаимодействия ортогональ- [c.202]

    Последняя е-форма имеет характерную для высокотемпературных модификаций элементов объемноцентрированную кубическую структуру и обычные термические свойства. Теория аллотропных превращений разработана еще недостаточно для полного понимания аллотропии плутония и других пяти элементов /-блока. Особенности аллотропии этих элементов связаны с особенностями их химических свойств. Близость энергетических электронных уровней у этих элементов приводит к широкому разнообразию устойчи- [c.126]

    Плутоний принадлежит к элементам VH периода таблицы Менделеева и следует в нем за ураном и нептунием. В отношении места этих элементов в периодической системе в настоящее время наиболее распространена теория Сиборга [3, гл. 17 170, 203, гл. 11 646, 648]. По этой теории у элементов, начиная формально с тория и кончая лауренсием, происходит последовательное заполнение четырнадцатью электронами внутреннего энергетического уров1НЯ 5/. Так как количество внешних валентных электронов (один электрон 6d и два —7s) при этом не меняется и остается рав ным количеству валентных электронов актиния, химические и физические свойства членов ряда должны быть сходны, а сам ряд получил название актинидов. Подобная закономерность четко выражена у лантанидов, имеющих электронную структуру сверх структуры ксенона if ndQs и главную валентность 3. [c.13]

    Начиная с америция, электронные конфигурации элементов,, по-видимому, подобны конфигурациям лантанидов и вполне отвечают актинидной теории. Из электронных структур и валентных состояний тяжелых элементов вытекают свойства 5/-элект-ронов, отличающиеся от свойств 4/-электронов лантанидов. Энергия связи 5/-электронов мала и сравнима с энергией связи б электронов. Это приводит к тому, что первые элементы ряда — ТЬ, Ра и и могут отдавать все валентные электроны в том числе и 5/-электроны, с образованием устойчивых к восстановлению многозарядных ионов. У следующих за ними элементов энергия связи 5/-электронов все еще остается в пределах энергии химической связи, благодаря чему нептуний, плутоний и америций могут проявлять высокую валентность 6. Даже для кюрия, имеющего сравнительно устойчивую семиэлектронную конфигурацию в 5/-слое, известны четырехвалентные соединения-СтОг и Стр4, образующиеся за счет отщепления одного 5/-электрона. [c.15]


    И0НИЗЭЩ1И В первую очередь отщепляются 5- и -электроны и происходит стабилизация /-электронов за счет оставшихся -электронов, образовавшиеся ионы в нормальных степенях окисления могут не содержать 6й-электроноа. С этой точки зрения наиболее показательны электронные структуры элементов в металлическом состоянии. Из значений металлических радиусов (см. рис. 3) следует, что ТЬ, Ра и и не имеют 5/-электронов. Первый 5/-электрон появляется только у нептуния. Диаграмма на рис. 4 [420] иллюстрирует области существования кристаллических структур и характер электронов металлов до америция включительно при различных теМ1пературах. Торий и протактиний характеризуются чистым -орбитальным поведением, а америций и последующие элементы — /-поведением. Уран, нептуний и плутоний в средней зоне имеют комбинированное ( /)-пове- [c.19]

    В последней графе табл. 4 представлены предполагаемые электронные структуры в металлическом состоянии, соответствующие описанному поведению. Протактиний, по-видимому, имеет три -электрона. Соотношение между количеством 5f- и 6й-элек-тронов у урана, нептуния и плутония может меняться в зависимости от физического состояния. [c.20]

    Атомные характеристики. Атомный номер 94. Имеет изотопы с массовыми числами от 232 до 246. Наиболее долгоживущий -радиоактивный изотоп 2 Ри с периодом полураспада 7,5-10 лет. Наиболее практически важный Ри имеет период полураспада 24360 лет. В пыли, собранной после взрывов термоядерных бомб, обнаружены следы изотопов 2 Фи и 2 Ри. Атомный радиус плутония 0,162 нм, иониый радиус Ри + 0,100, а Ри + 0,090 нм. Конфигурация внешних электронных оболочек 5й 5/ б526р 752. Электроотрнцательность 1,11—1,2 Плутоний имеет шесть аллотропических модификаций, из которых а, Р и у обладают сложной кристаллической структурой с ярко выраженными связями ковалентного характера  [c.624]

    Интересно, что кубические структуры с координационным числом, равным шести, возникают у лантаноидов в соединениях Meg , где существуют условия для заполнения р-оболочки углерода, а следовательно, возможно образование ионов с внешней р -оболочкой. Все многовалентные актиноиды (торий, уран, нептуний, плутоний), имея по четыре—шесть валентных электронов, образуют ионы с р -оболочками и карбиды со структурой типа Na l, обладающие вследствие наличия избытка свободных электронов с 5/-уровня металлической проводимостью. Карбиды со структурой этого типа должны образовывать протактиний, америций, кюрий и берклий, имеющие достаточное число валентных электронов. Актиноиды образуют и силициды типа арсенида никеля с металлической проводимостью. [c.184]

    Иное происходит при превращении плотных гексагональной или кубической упаковок в ОЦК структуру. Повышение температуры сопровождается не только увеличением энергии тепловых колебаний атомов, но и увеличением энергии электронов внешней оболочки ионов. В металлической решетке, где внешние электроны положительных ионов сильно возбуждены вследствие возмущающего действия соседних атомов, сравнительно небольшой прирост температуры может быть достаточным для наступления перекрытия и обменного взаимодействия внешних р -оболо-чек ионов, не перекрывающихся при низких температурах. Это приводит к переходу плотных низкотемпературных модификаций в высокотемпературные ОЦК структуры у натрия, бериллия, кальция, стронция, скандия, иттрия, всех лантаноидов, титана, циркония, гафния, таллия, актиния, тория, плутония и америция. По той же причине происходит превращение ГЦК у- Мп и у-Ре в ОЦК 8-модификации. Такой переход в эрбии, тулии, прометии, актинии был предсказан [57, 60] до его экспериментального подтверждения [116]. В результате повышения температуры разрушаются двухэлектронные ковалентные связи и образуются ионы с внешними р -оболочками, а следовательно, и ОЦК высокотемпературные модификации у урана, нептуния. Таким образом, повышение температуры сначала приводит к разрушению направленных двухэлектронных связей, сопровождающемуся переходом валентных электронов в свободное состояние и образованием плотных упаковок. При дальнейшем повышении температуры, вследствие перекрывания ортогональных р -оболочек, появляются ОЦК высокотемпературные модификации. [c.202]

    Плутоний (5/ 6в 6р 7я ) имеет шесть модификаций. Его низкотемпературные а-, Р- и у-модификации (моноклинная, объемноцентрированная моноклинная и орторомбическая) представляют сложные ковалентно-металлические структуры с резко выраженной анизотропией свойств и пониженной пластичностью вследствие наличия сильных ковалентных направленных связей, образуемых спариванием части валентных и /-электронов. Более высокотемпературные б- и б -модификации плутония имеют гранецентрированные кубическую и тетрагональную структуры, а е-плу-тоний — объемноцентрированную кубическую. Исходя из валентности плутония в наиболее устойчивых соединениях, равной 4- -, можно ожидать, что при образовании его металлических модификаций свободными становятся четыре валентных электрона и внешней оболочкой иона + оказывается р -оболочка. При 320—480° р-орбитали не перекрываются и решетка оказывается плотной кубической. Выше 480° и вплоть до температуры плавления (640°) вследствие повышения энергии электронов в р -оболочках р-орбитали перекрываются и это приводит к образованию объемноцентрированной кубической структуры с направленными связями. Уменьшение плотности при переходе от у- к б-фазе обусловлено, по-ви-димому, уменьшением числа электронов, участвующих в связи (от 5—6 до [c.240]


Смотреть страницы где упоминается термин Плутоний электронная структура: [c.22]    [c.36]    [c.172]    [c.532]    [c.95]    [c.965]    [c.132]    [c.152]    [c.257]   
Аналитическая химия плутония (1965) -- [ c.14 , c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Плутоний



© 2025 chem21.info Реклама на сайте