Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время диффузии из ограниченной области

    Если пламя распространяется стационарно, химическая реакция протекает в ограниченной области толщиной oy, которая определяется величиной Vftf, где tf — время полупревращения реакции при средней температуре пламени Г/ и Vf — линейная скорость распространения пламени. Для того чтобы такое стационарное состояние существовало, время передачи тепла через зону пламени bf должно быть такого же порядка, что и время полупревращения реакции tf. Тогда, решая уравнение диффузии, получаем [c.398]


    А. Я- Темкин. Замечания об уравнении диффузии в докладе X. С. Багдасарьяна. Рассматриваются малые концентрации (максимальная концентрация возбужденных молекул 10 1/сл ). Так как время жизни возбужденных молекул очень мало, то они не могут приходить откуда-то издалека, они приходят лишь из ограниченной области пространства вблизи молекулы ингибитора. Нужно оценить размеры этой зоны вокруг возбужденных молекул. Практически при -малых концентрациях число возбужденных молекул в этой зоне мало и флуктуации их числа могут быть порядка среднего числа этих молекул. Тогда понятие концентрации теряет смысл.  [c.145]

    Несколько формул, которыми располагают в настоящее время для расчетов коэффициентов диффузии в жидких смесях, имеют очень ограниченную область применения. Рассматриваемые здесь выражения относятся к неионным разбавленным растворам веществ, не диссоциирующих при разбавлении. [c.461]

    Использование различных вариантов метода фотоэмиссии (в том числе лазерного) позволяет решать широкий круг вопросов в области химической и электрохимической кинетики. Малые расстояния между зоной образования промежуточных продуктов и поверхностью электрода в значительной мере устраняют диффузионные ограничения и дают возможность измерять константы скорости очень быстрых электродных к 75 см/с) и гомогенных химических реакций, характерное время которых сравнимо или больше характерного времени диффузии к электроду продуктов захвата сольватированных электронов акцептором (10 —10 с) Метод позволяет также определять коэффициенты переноса электродных реакций и измерять коэффициенты диффузии промежуточных продуктов. [c.219]

    Современному аналитику часто приходится участвовать в проведении такой важной операции, так математическое моделирование, т. е. представление системы и всех ее подсистем (компонент) в математической форме. Тип модели, которая разрабатывается для представления какой-либо определенной физической системы, зависит от постановки задачи и налагаемых ограничений. После того как сформулирована базисная качественная модель, математические уравнения для модели могут быть выведены из фундаментальных физических принципов или из экспериментов, проводимых с компонентами системы. В общем случае математические уравнения, описывающие систему, могут иметь различную форму это могут быть линейные или нелинейные уравнения, обычные или дифференциальные уравнения в частных производных, интегральные уравнения, уравнения в конечных разностях и другие уравнения. Если информацию предполагается получить из модели, то уравнения, записанные одним из указанных выще способов, необходимо рещить. Однако многие из этих уравнений не имеют аналитического (в математическом смысле) рещения. Вследствие этого рассматриваемая область является именно той областью, где существенную роль играют численные методы ОД при помощи компьютера. Типичные примеры таких методов описаны в литературе [56— 59]. Так, в статье [59] обсуждаются численные методы решения уравнения диффузии — конвекции, описывающего дисперсию в цилиндрической трубке, которая играет важную роль в аналитических методах, основанных на весьма популярной в настоящее время методике анализа в потоке. [c.380]


    Давление пара при высокой температуре можно определять по началу кипения при заданном давлении. Руффом с сотрудниками [41—43] был предложен метод, в котором содержимое сосуда с небольшим отверстием нагревают в индифферентной атмосфере при медленном повышении температуры. Вес сосуда, который можно определять непрерывно с помощью пружинных весов, изменяется после превышения температуры кипения быстрее, чем раньше, так как взамен диффузии наступает истечение пара [44, 45]. Существенным является использование сосуда из совершенно газонепроницаемого материала (например, иридия, но не графита), так как иначе возникают эффузионные явления, мешающие определению. В то время как весовой метод Руффа можно использовать до очень высоких температур, в низкотемпературной области, где экспериментальные трудности еще не слишком велики, рекомендуют сохранять температуру постоянной и постепенно снижать давление [46] в этом случае точка кипения обнаруживается гораздо резче. Для сублимирующихся веществ весовой метод имеет ограниченное применение. [c.563]

    Фракционирование сложных смесей веществ является одним из основных этапов в решении многочисленных проблем биохимии, биофизики и молекулярной биологии, в связи с тем что биологические системы содержат большое число компонентов, часто близких по ряду химических и физических свойств, а также в связи с развитием методов изучения первичной структуры биополимеров. Выделение отдельных компонентов из таких систем является, как правило, весьма сложной экспериментальной задачей, решение которой ранее осуществлялось путем использования физико-химических методов — осаждения, кристаллизации и сорбции. В настоящее время имеется большой арсенал средств избирательного выделения компонентов или разделения сложных смесей с получением всех веществ в чистом виде. К ним относятся в области изучения биополимеров и их фрагментов прежде всего хроматография и электрофорез. Для аналитических целей при рассмотрении систем, содержащих ограниченное число компонентов, успешно применяется также седиментация, диффузия и ряд других процессов, в которых осуществляется обычно не полное разделение компонентов, а относительное смещение границ зон отдельных веществ. [c.6]

    В то же время необходимо сказать несколько слов об основных ограничениях метода газовой хроматографии. Исследуемые сорбаты должны быть летучими и термически устойчивыми в условиях эксперимента веществами. ГХ практически непригодна, если размер молекулы сорбата сопоставим с размерами пор сорбента, так как при этом из-за замедления процессов диффузии трудно ожидать, что за сравнительно короткое время пребывания вещества в колонке все поры будут доступны для сорбции исследуемых молекул. Кроме этого, адсорбционно-статические и калориметрические методы дают возможность получать более надежные результаты в широкой области концентраций, поскольку в этом случае обеспечивается лучший контроль за установлением термодинамического равновесия. [c.308]

    N-6-7. Это в общем типично для ферментативных процессов. Оказывается, что в обычных условиях среднее время образования такой активной конфигурации составляет т 10 - 10 " с , что совпадает с временами оборота фермента в условиях субстратного насыщения. В растворе для аналогичной реакции это время намного больше даже при больших коэффициентах диффузии. Причина состоит в том, что, попав в ограниченную область в плотноструктурированной среде, функциональные группы "находят" друг друга и сближаются на короткие расстояния раньше, чем они "разбегутся" в разные стороны, как это происходит в растворе. Вместе с тем величина т 10 - 10 " с намного больше, чем времена релаксаций отдельных групп, что является следствием достаточно жестких стерических условий для протекания реакции. Увеличение числа функциональных групп и необходимых одновременных контактов между ними увеличивает время достижения многоцентровой активной конфигурации. Общая скорость ферментативного катализа определяется именно временем образования нужной конформации при спонтанном сближении соответствующих групп в активном центре. Последующие за этим электронные взаимодействия происходят гораздо скорее и не лимитируют общую скорость катализа. [c.129]

    На самом деле ограничения методов, подобных методу дерева неполадок и являющихся по существу методами решения обратной задачи, имеют несколько отличную от указываемой ниже автором природу. В конечном итоге, если абстрагироваться от конкретики, суть затруднений всегда одна и та же - некорректность (по Ж. Адамару) поставленной задачи. Это явление хорошо известно, и в промышленной безопасности такой некорректно поставленной будет, например, задача восстановления места расположения и структуры источника выброса дрейфующего парового облака. (Уже за время t, Tai oe, что ti D-L, где L - размер облака, а D - коэффициент турбулентной диффузии, полностью "стирается" память об условиях возникновения облака.) Однако на основе сказанного было бы неправильным полагать ограниченной применимость метода дерева неполадок к задачам оценки риска химических и нефтехимических производств. Просто областью применения этого метода является определение характеристик (частота возникновения, вероятность и т. д.) инициирующих аварию деструктивных явлений, и, как показывает опыт многих проведенных исследований, метод деревьев неполадок можно считать в целом неплохо подходящим для описания фазы инициирования аварии, т. е. фазы накопления дефектов в оборудовании и ошибок персонала (о включении в метод деревьев неполадок "человеческого фактора см. [Доброленский,1975]). Что же касается развития аварии и ее выхода за промышленную площадку, то здесь для построения возможных сценариев развития поражения (т. е. воспроизведения динамики аварии) и расчета последствий адекватными являются прямые методы (такие, например, как метод дерева событий). Сопряжение двух этих различных по используемому математическому аппарату методов описания аварии, необходимое для определения собственно риска (и столь сложное, например, в ядерной энергетике), оказывается для химических производств возможным эффективно реализовать за счет специфики промышленных предприятий - для них конструктивно описывается вся совокупность инициирующих аварию деструктивных явлений, и стало быть, можно рассмотреть все множество возможных аварий. Именно это свойство - способность описать все возможные причины интересующего нас верхнего нежелательного события - в первую очередь привлекает исследователей в методе дерева неполадок. - Прим. ред. [c.476]


    Растворимость полимера данного полимергомологического ряда падает с повышением молекулярного веса. Это обусловлено тем, что растворение носит равновесн тй т ярякт р и с повышением молекулярного веса отдельные участки длинной молекулы могут оказаться попеременно связанными между собой, в то время когда другие участки молекулы как бы являются растворенными и, таким образом, переход всей молекулы в раствор затруднен тем сильнее, чем больше точек соприкосновения между молекулами. Процесс растворения обычно начинается с проникновения подвижных молекул растворителя в массу полимера, т. е. с набухания. Набухание, как правило, начинается в аморфных областях полимера. Если растворитель только ограниченно растворим в полимере, то через определенный промежуток времени устанавливается равновесие, которое иногда может ограничиться набуханием только аморфных областей полимера. Если растворитель способен к смешению с полимером в любых соотношениях, то непосредственно вслед за набуханием следует постепенный переход молекул полимера в раствор и диффузия их в объеме раствора с образованием истинных растворов. При этом в начале в раствор переходят ааиболее низкомолекулярные фракции. [c.15]

    Усложненная кинетика исчезновения радикалов в целлюлозе подтверждает сделанный при изучении спектров вывод о присутствии нескольких типов радикалов. Кислород может реагировать практически со всеми возможными радикалами. Устойчивость радикалов в целлюлозе, находящейся на воздухе, довольно значительна, что указывает на относительно медленную диффузию кислорода в кристаллические области. Вода может служить в качестве вещества, реагирующего с целлюлозой, если она присутствует во время облучения. Если же ее добавляют после облучения, то ее основная роль состоит в облегчении диффузии в аморфные, а также в кристаллические области за счет набухания. Некоторые участки, по-видимому, устойчивы к действию воды. На это указывает ограниченное исчезнование радикалов и образование долгоживущих радикалов в присутствии воды. Такое действие воды отмечалось также при исследовании крахмала [1521 и сахаров [202, 223]. [c.461]

    Способность полимеров понижать чувствительность бетонов к коррозии солями находит практическое применение, в частности, при строительстве мостов на шоссейных дорогах [97, 228, 231, 290, 509, 579, 578, 612—614, 955]. Хотя для подобных областей применения можно использовать как обычные материалы, так и материалы с улучшенными свойствами, однако совершенно очевидно, что ограничение диффузии солей к стальному каркасу железобетона является очень важным, поскольку позволяет увеличить срок службы изделий. В работе [614] также установлено, что импрегнирование полимерами снижает коррозию стального каркаса даже в бетонах с высоким содержанием солей. Как показано на рис. 11.17, в импрегнированпом железобетоне, содержащем соли, коррозии стальных элементов не наблюдается после циклических испытаний нагрев — охлаждение, в то время как в контрольных образцах обнаружены значительные очаги коррозии. [c.301]

    Спады на кривых заряжения, наблюдаемые в области больших заполнений, считаются [211 признаком эффекта больших заполнений. Действительно, вдоль кривой заряжения, т. е. при увеличении длительности электролиза, адсорбция деполяризатора снижается. Если исходное значение адсорбции таково, что константа скорости возрастает при уменьшении адсорбции, на кривой заряжения электрода током постоянной плотности должен обнаружиться минимум потенциала при любой плотности тока. Кривые заряжения такой формы наблюдались в нескольких случаях [7,21—231. Однако в случае БАТ, а также при восстановлении 1,2-ди(пиридил-2)эти-лена [71 и ди(карбоалкоксиалкил)ртути [22] минимумы потенциала появляются лишь в ограниченном интервале плотностей тока. Кроме того, непонятно появление во всех трех указанных случаях острых максимумов (рис. 2) потенциала в условиях, когда вклад диффузии значителен. В этих условиях в начальные моменты электролиза адсорбция должна слабо зависеть от времени [141, тем слабее, чем больше поток диффузии на электрод. Следовательно, и зависимость константы скорости электродной реакции от времени должна в начальные моменты электролиза обнаруживаться преимущественно при малом диффузионном вкладе. Иными словами, при увеличении вклада диффузии в переходное время — при увеличении объемной концентрации или уменьшении плотности тока — максимум тока должен был бы растягиваться вдоль оси времени (заряда), терять остроугольную форму, от эффект не наблюдался ни в одном из известных нам случаев. Можно было объяснить отсутствие этого эффекта тем, что образующийся продукт электролиза не покидает поверхность, так что адсорбция деполяризатора снижается со скоростью, на которую диффузия практически не влияет. Однако ацетилтиофен, образующийся при восстановлении БАТ, десорбируется с поверхности в момент образования [9]. Добавление к раствору другого продукта электролиза — иона брома — не изменяет фэрму кривой. Такая же ситуация зафиксирована в [22]. [c.187]

    Таким образом, задачу измерения градиента концентрации йС/йх = УС = п/к можно свести к измерению градиента показателя преломления Уп. Последний, в свою очередь, может быть измерен в абсолютных цифрах или в единицах (числе) интерференционных полос на единицу длины. Соответственно, методы измерения Уп могут быть подразделены на собственно рефрактометрические и интерферометрические. В первых непосредственно воспроизводится регистрирующим устройством кривая Ул = = [ (л ), которая затем подвергается графоаналитической обработке для расчета О или других параметров. В интерферометриче-ских методах производится, в сущности, счет полос, обусловленных разностью хода лучей, прошедших области кюветы с различными п. Точность интерферометрических методов регистрации по крайней мере на порядок выше, чем собственно рефрактометрических, однако применение их подчас бывает ограниченным в частности, некоторые из них оказываются непригодными для исследования подвижных границ, в седиментации или электрофорезе некоторые модификации интерферометрических методов требуют, чтобы кривые были обязательно симметричны и унимодальны (с одним максимумом, что гарантируется только в случае диффузии) и т. д. В сравнительно недавнее время были предложены варианты интерференционных методов, позволяющие одновременно непосредственно регистрировать формы кривых распределения (1п/с1х = / (х) или п (л ). [c.157]

    Концентрация сорбата в газовой фазе может быть повышена за счет увеличения молекулярного взаимодействия между разделяемым компонентом и неидеальным газом-носителем. Для этого в качестве элюента используются вещества в условиях температуры и давления, близких к критическим [129—131]. Таким образом хрс-матографический процесс осуществляется в переходной области между газовой и жидкостной хроматографиями. При этом сочетаются преимущества обоих методов. Коэффициент распределения становится зависимым от давления и его- можно уменьшить в 1000 и более раз. Большие возможности открывает варьирование давления во время опыта. Существенное влияние на удерживание оказывает и природа подвижной фазы, ее способность к специфическому взаимодействию с сорбатом. При выбо-ре соответствующих параметров можно достичь эффективности и скорости разделения, близких к аналогичным скоростям и эффективности ГХ и значительно более высоким, чем при жидкостной хроматографии, вследствие меньшей вязкости НФ и больших значений коэффициентов диффузии. ГХ при высоких давлениях может быть осуществлена как в газс-жидкостном, так и в газо-адсорбционном вариантах. Ассортимент НФ из-за повышения их летучести ограничен и в каждом конкретном случае необходима проверка возможности их миграции. Этого недостатка лишены твердые адсорбенты. Сообщается, что при больших давлениях в СОг возможно растворение D 200, SE-30, ПЭГ 4000, апиезона L, в NH3 — ПЭГ 20М, OV-17 [133], в F2 I2 — полипропи-ленгликоля, апиезона М, SE-52 [202]. Приведенные данные свидетельствуют о высокой элюирующей способности плотных подвижных фаз, В табл. 4 приведены некоторые примеры, иллюстрирующие аналитические возможности флюидной хроматографии. [c.94]

    Как и для белков, резкое падение /r выше 220 К и отсутствие заметного уширения узкой компоненты спектра РРМИ при этих температурах не может быть объяснено в рамках обычных твердотельных моделей и связывается с внутримолекулярной подвижностью, обусловленной возбуждением конформационных подсостояний ДНК. Как и для белков, внутримолекулярное движение может быть смоделировано в рамках модели броуновского осциллятора с сильным затуханием или ограниченной диффузии. В качестве фрагмента двойной спирали ДНК, участвующего в диффузионном движении, можно рассмотреть, например, один или несколько нуклеотидов, азотистые основания, остатки сахаров. На рис. 14.25 представлены расчетные данные /r = /(Г, Еа, а, Тс) с применением следующих параметров Л = 0,61, = (l/2)Q x ) = 1,25 (размер области движения) Q = 4ж тв/Х, 2в — угол рассеяния, А — длина волны излучения, Еа = 6,2 ккал/моль (энергия активации) при Л = 1,2 = 2, Еа = 8,75 ккал/моль, характерное время корреляций движения, полученное из уширения линии ДГ a h/тс 10 с. [c.475]


Смотреть страницы где упоминается термин Время диффузии из ограниченной области: [c.163]    [c.90]    [c.204]   
Теоретические основы электрохимического анализа (1974) -- [ c.191 ]




ПОИСК







© 2025 chem21.info Реклама на сайте