Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал термодинамический большой

    Стандартные потенциалы дают представления о возможном направлении окислительно-восстановительных химических реакций, однако в реальных условиях это направление может быть иным по следующим причинам. Окислительно-восстановительные системы, в зависимости от скорости реакций, протекающих на электродах, подразделяются на обратимые и необратимые. Стандартные потенциалы обратимых систем измерены непосредственно описанным выше способом, тогда как стандартные потенциалы необратимых систем в большинстве случаев находят путем термодинамических расчетов. Вследствие этого на практике их величины оказываются иными, так как на них оказывают большое влияние многие факторы. Например, для необратимых систем не наблюдается закономерного изменения потенциала в соответствии с изменением концентрации компонентов системы, и расчеты, проведенные с использованием стандартных окислительных потенциалов и концентраций компонентов, носят скорее иллюстративный характер, чем отвечают действительным данным. Поэтому гораздо большее практическое значение имеют формальные (реальные) потенциалы окислительно-восстановительных систем. Формальные потенциалы ( ф) находят, измерением э. д. с. гальванического элемента, в котором начальные концентрации компонентов окисли- [c.350]


    Термодинамические параметры реакций определяются термодинамическими свойствами веществ, участвующих в реакции. Важнейшими из этих свойств являются внутренняя энергия, энтальпия, энтропия, теплоемкость, энергия Гиббса (изобарно-изотермический потенциал), энергия Гельмгольца (изохорно-изотермический потенциал). Как показывает статистическая термодинамика, каждая из термодинамических функций отражает в совокупности влияние всех особенностей состава, внутреннего строения и условий существования веществ. Использование термодинамических величин для характеристики химических свойств веществ и параметров химических реакций дает возможность количественно отражать влияние этих факторов. Вместо того чтобы определять, как то или иное изменение в строении молекул (характер связи между атомами, расстояние между ними и др.) влияет на положение равновесия в данной реакции (что большей частью и недостижимо), мы, пользуясь термодинамическим методом, оперируем такими функциями, которые дают возможность отразить это влияние суммарно и в более доступной форме. [c.14]

    Отсутствие надежных данных по кислородному перенапряжению объясняется сложностью процесса анодного образования кислорода и почти неизбежным наложением на него побочных и вторичных реакций. Прежде всего необходимо напомнить, что обратимый кислородный электрод экспериментально реализовать чрезвычайно сложно, и, следовательно, входящая в уравнение (20.5) величина не определяется опытным путем. Ее обычно рассчитывают теоретически. Для выделения газообразного кислорода из растворов кислот необходимо, чтобы потенциал анода был более положительным, чем равновесный потенциал кислородного электрода ( + 1,23 В при ан = 1 и 25° С), на величину кислородного перенапряжения, отвечающую данной плотности тока. Однако еще до достижения такого высокого положительного потенциала больщинство металлов термодинамически неустойчивы, и вместо реакции выделения кислорода идет процесс их анодного растворения или окисления. Для изучения кинетики выделения кислорода из кислых сред можно использовать поэтому только металлы платиновой группы и золото (стандартные потенциалы которых ноложительнее потенциала кислородного электрода), а также некоторые другие металлы, защищенные от растворения в кислотах стойкими поверхностными оксидами. В щелочных растворах, где равновесный потенциал кислорода менее положителен (при аоп-= 1 и 25° С он составляет около +0,41 В), в качестве анодов применяют также металлы группы железа, кадмий и некоторые другие. Установлено, что в условиях выделения кислорода поверхность всех металлов, включая платину и золото, оказывается в большей или меньшей степени окисленной, и поэтому кислород выделяется обычно не на самом металле, а на его оксидах. [c.421]


    Большой ПОТЕНЦИАЛ (ТЕРМОДИНАМИЧЕСКИЙ ПОТЕНЦИАЛ ОТКРЫТОЙ СИСТЕМЫ) С1 [c.320]

    Потенциал разложения и перенапряжение. В принципе процессы электролиза обратны процессам работы соответствующих гальванических элементов, и при обратимом проведении термодинамическая характеристика их должна совпадать. Однако при практическом проведении электролиза процесс сопровождается большей частью теми или иными побочными явлениями, делающими его не вполне обратимым. [c.449]

    Особые свойства тонкого слоя толщиной к однозначно характеризуются его химическим потенциалом X J, отличающимся от химического потенциала [Хоо большой массы того же вещества. Все остальные термодинамические характеристики слоя могут быть найдены из (Х ,, используя общие соотношения термодинамики (гл. 4). [c.161]

    Противоионы диффузной части могут обмениваться на другие ионы того же знака. При повышении концентрации раствора противоионы из диффузного слоя как бы вытесняются в адсорбционный слой, и тогда С-по-тенциал может стать равным нулю. В этом случае говорят, что мицелла находится в изоэлектрическом состоянии. Электрокинетический потенциал зависит не только от природы вещества, как термодинамический потенциал, но и от температуры. Электрокинетический потенциал имеет большое значение при характеристике коллоидных систем и, в частности, отражает устойчивость системы. [c.232]

    Дзета-потенциал тем больше, чем больше термодинамический потенциал фо  [c.109]

    В связи с этим определение ведущих реакций процесса диффузионного насыщения металлов является весьма важной научной и практической задачей, решение которой позволяет управлять процессами химико-термической обработки, совершенствовать существующие и разрабатывать новые методы. При химикотермической обработке металлов в реакционных камерах установок могут протекать следующие основные реакции термическая диссоциация, диспропорционирование, восстановление водородом, обмен с насыщаемым металлом. Выявление ведущих химических реакций можно осуществлять экспериментальным или расчетным термодинамическим путем. Известно, что более вероятной считается реакция, имеющая более отрицательный изобарный потенциал или большую константу равновесия. [c.10]

    Потенциал электрода, измеренный в начальный момент вы-1 деления или растворения данного элемента на электроде, назы-1 вается потенциалом выделения или, соответственно, потенциа- , лом растворения. Потенциал выделения элемента на электроде в условиях обратимости процесса (и при отсутствии побочных реакций) равен по абсолютной величине значению равновесного потенциала этого электрода для данной концентрации, взятому с обратным знаком. Но в большинстве случаев потенциал выделения больше равновесного потенциала данного элемента. Разница между потенциалом выделения и равновесным потенциалом данного элемента называется перенапряжением. На основании вышеизложенного можно сказать, что перенапряжение связано с термодинамической необратимостью процесса. [c.267]

    Термодинамические расчеты показали принципиальную возможность хлорирования малоуглеродистого и углеродистого феррохрома—термодинамический потенциал имеет большое отрицатель- [c.38]

    Металлическое состояние для большинства технических металлов, находящихся в обычных атмосферных условиях, а также под влиянием многих химических реагентов, является с термодинамической точки зрения неустойчивым. Стремление перейти из металлического состояния в ионное весьма различно для разных металлов и наиболее точно может быть охарактеризовано величиной уменьшения свободной энергии при протекании соответствующего коррозионного процесса или приближенно также величиной стандартного (нормального) электрохимического потенциала металла. Чем более отрицательное значение имеет электродный потенциал, тем больше термодинамическое стремление данного металла перейти в ионное состояние. В табл. 1 приведены рассчитанные из термодинамических данных нормальные равновесные потенциалы некоторых металлов, т. е. электродные потенциалы при активности собственных ионов металла в растворе, равной единице, и при температуре 25° С. [c.193]

    В связи с изложенным, для численного раскрытия величины Кр предпочтительнее всего обратиться к выражению (11.85), которое позволяет с требуемой точностью количественно оценить значение константы равновесия при различных величинах давления и температуры в газонефтяной системе. Отличительной особенностью выражения (П.85) по сравнению с (П.89) является то, что рекомендуемая для вычислений формула целиком и полностью опирается на информацию Д(3, Ср, с , полученную при непосредственном экспериментировании в условиях, близких к природным [10]. Это положение усугубляется также и тем, что величины А0(АФ1) и Кр характеризуют направление протекания процессов и термодинамические условия равновесия, или указывают, насколько данный процесс далек от условий равновесия, что определяет выражение (П.89). Поэтому величина АО примерно равна нулю, если процесс находится в состоянии равновесия. Когда АО большая отрицательная величина, то данная система должна еще прореагировать в значительной степени, прежде чем процесс достигнет равновесия. Однако скорость процесса не связана ни с знаком, ни с величиной термодинамического потенциала, и его нельзя предсказать, зная АО. [c.89]


    Выше указывалось, что возможность изменения состояния равновесия имеет важное значение для инженера-практика. Изложение условий состояния равновесия было дано без сведений о том, какие интенсивные характерные для равновесия величины состояния следует изменять, чтобы передвинуть равновесие. Кроме того, важно знать, в какую сторону сдвинется равновесие, если какую-либо величину состояния равновесной системы изменить определенным образом. Ответ на этот вопрос дает принцип Ле Шателье — Брауна, известный из термодинамики Если в термодинамической системе, находящейся в состоянии стабильного равновесия, изменить какую-либо интенсивную величину состояния, то равновесие при этом передвинется таким образом, чтобы изменение соответствующих сопряженных экстенсивных величин состояния было по возможности наименьшим . Вывод этого правила можно найти в учебниках по термодинамике, и мы ограничимся только описанием конкретных случаев. С нашей точки-зрения, большую роль играют интенсивные переменные состояния — такие как температура, давление и химический потенциал. Рассмотрим, какое передвижение равновесия числа пробегов реакции будет происходить при изменении этих величин, т. е. какой знак будет перед частными производными [c.140]

    Расчеты изобарных потенциалов и констант равновесия различных реакций легко выполняются путем комбинирования изобарных потенциалов реакций образования соединений из простых веществ. Стандартный изобарный потенциал любой химической реакции равен алгебраической сумме соответствующих величин для реакций образования всех участников реакции. Таблицы стандартных изобарных потенциалов образования химических соединений при 1 атм и 25 X являются важнейшей сводкой исходных данных для термодинамических расчетов. Эти табличные данные в большинстве случаен вычислены путем комбинации данных для других реакций. Поэтому онн связаны с ошибками опыта, которые суммируются при сочетании величин ЛС и могут составить большую относительную величину, если значение AG° образования невелико и получено путем вычитания больших величин. [c.300]

    Пористые мембраны представляют гетерогенные системы с весьма развитой поверхностью раздела твердое тело (матрица)— газ. Известно, что состояние газа или жидкости вблизи поверхности раздела фаз отличается от свойств той же среды в большом объеме. Особенности поведения веществ в этой области принято называть поверхностными явлениями. Термодинамически поверхностные явления трактуются как проявление особого вида взаимодействия системы, которое характеризуется уменьшением свободной энергии Гиббса при переходе вещества из объемной в поверхностную фазу. Убыль свободной энергии Гиббса пропорциональна площади поверхности и количественно определяется работой, которую необходимо затратить на образование поверхности или перемещения массы из объема в поверхностный слой в изотермическом процессе. Следовательно, речь идет о существовании потенциала поверхностных сил. [c.42]

    Выражение в квадратных скобках равно увеличению энтропии всего объема Ух при образовании критического зародыша. Так как система изолирована, то прирост энтропии равен изменению при образовании критического зародыша термодинамического потенциала системы, деленного на Т. Изменением интенсивной величины— температуры можно пренебречь ввиду большой величины объема У . Так как мы включали в (3.161) в свободную энергию объема V член кТ 1п М,, взятый из выражения для термодинамического потенциала раствора, мы должны его учитывать и теперь. Это приведет к тому, что изменение термодинамического потенциала будет на соответствующую величину превышать гиббсову работу образования критического зародыша. В формуле (3.161) фигурирует число молекул в объеме У, а не во всем объеме V.,, так как мы подсчитывали вероятность появления зародыша именно в объеме У, а если мы имеем информацию, что зародыш появился именно там, то это и уменьшает энтропийный член 1п Ы до величины 1пЛ//. Это пример эквивалентности информации отрицательной энтропии. В итоге, подставляя газокинетическое выражение для О, получим вместо формулы (3.166) выражение [c.287]

    Твердые вещества в данных условиях тоже могут находиться в состояниях, обладающих различной термодинамической устойчивостью, например, в различных кристаллических формах. В свою очередь для любой из этих форм более устойчивым является состояние, соответствующее идеально правильному кристаллу. Дефекты структуры, вызванные условиями образования кристалла или последующей деформацией под действием внешних механических сил, в какой-то степени уменьшают его устойчивость, так как образование этих деформаций связано с затратой энергии и сопровождается возрастанием энтропии. Точно так же кристаллическое тело в измельченном состоянии, т. е. обладающее большей поверхностью, менее устойчиво. Во всех подобных случаях уменьшение устойчивости сопровождается возрастанием изобарного потенциала. В таких состояниях вещество обладает большей химической активностью и меньшей химической стойкостью, большей способностью к фазовым переходам (большим давлением насыщенного пара, большей растворимостью и т. д..) Выделение вещества в более активных формах и состояниях может происходить самопроизвольно только из состояний с еще большим изобарным потенциалом (еще более активных в данных условиях). Обычно такими состояниями служат сильно пересыщенный раствор или переохлажденная жидкость. Кроме того, такое вещество может получаться при химической реакции, происходящей в условиях, достаточно далеких от равновесных. [c.227]

    Все это неоднократно служило источником недоразумений и всегда требовало большого внимания к принятым обозначениям и терминам. Поэтому по решению Комитета технической терминологии АН СССР в конце 40-х годов эти термины рекомендовано заменить терминами изобарно-изотермический потенциал и изохорно-изотермический потенциал , так как обе функции являются термодинамическими потенциалами. [c.15]

    Как ранее было указано, электрохимическая реакция присоединения электрона к иону водорода требует некоторой энергии активации, т. е. для того, чтобы процесс разряда ионов водорода шел на электроде с определенной скоростью, необходимо сообщить ему некоторый избыточный (против равновесного) потенциал, который определяется величиной перенапряжения водорода. Потенциал разряда водородных ионов с определенной скоростью к равен сумме равновесного потенциала водородного электрода и величины перенапряжения водорода, обозначаемой г]. Под величиной перенапряжения водорода понимают сдвиг потенциала катода при данной плотности тока 1п в отрицательную сторону по сравнению с потенциалом водородного электрода в том же растворе, в тех же условиях, но при отсутствии тока в системе. Поэтому расход электрической энергии на получение водорода электролизом больше, чем это определяется термодинамическими подсчетами. [c.42]

    Применение энтальпии как термодинамического потенциала затрудняется тем, что она содержит в качестве независимой переменной энтропию как функцию состояния. Энтальпию можно представить как функцию каждого полного набора переменных состояния, но тогда она больше не является термодинамическим потенциалом. Особое значение имеет представление, аналогичное (20.20) и (20.21)  [c.105]

    Температура газа определяется средней кинетической энергией его молекул. При неизменных внешних условиях температура остается постоянной, что связано со стационарным распределением молекул по скоростям, хотя отдельные молекулы имеют самые различные скорости. Давление газа — суммарный эффект ударов очень большого числа молекул о стенку сосуда. Статистической природой обладают также объем и плотность газа. Важнейшие термодинамические функции энтропия, изохорный и изобарный потенциал и другие — зависят от температуры, давления и объема. Значения этих функций представляют собой средние статистические величины, относящиеся к системам, состоящим из большого числа частиц. [c.148]

    Коррозионные потенциалы амальгам в растворах солей соответствующих металлов почти достигают значений обратимого потенциала легирующего компонента благодаря очень низкой скорости коррозии и отсутствию заметной анодной поляризации. Например, коррозионный потенциал амальгамы кадмия в растворе С(1504 ближе к термодинамическому для реакции Сс1 - Сс " - - 2ё, чем для чистого кадмия в этом же растворе. Стационарная скорость коррозии чистого кадмия значительно выше, чем его амальгамы, что ведет к еще большим отклонениям измеряемого коррозионного потенциала от соответствующего термодинамического значения. Вообще говоря, стационарный потенциал любого металла, более активного, чем водород (например, железа, никеля, цинка, кадмия) в водных растворах, содержащих собственные ионы, отклоняется от истинного термодинамического значения на величину, зависящую от преобладающей скорости коррозии, которая сопровождается разрядом Н+ [17]. Измеренные значения положительнее истинных. Это справедливо также и для менее активных металлов (например медь, ртуть), которые корродируют в присутствии растворенного кислорода. [c.64]

    На рис. 2.23 представлена зависимость скорости коррозионного проникновения Vg сварочной проволоки св-08 от степени пластической деформации 8. В этой зависимости отмечается максимум. Механохимический эффект наиболее сильно проявляется на стадии деформационного упрочнения, когда имеет место интенсивное образование дислокационных скоплений в металле, приводян1ее к росту термодинамического и химического потенциала. Чем больше степень деформации, тем больше скорость коррозионного проникновения металла. Однако, в области деформации, соответствующей стадии динамического возврата, этот эффект заметно снижается. Это связано с затуханием процессов деформационного упрочнения металла. Подобные зависимости отмечаются при коррозионных испытаниях малоуглеродистой стали электрохимическими методами [50]. [c.128]

    Определение в системе реагирующих веществ той реакции, которая термодинамически способна проходить, можно осуществить также на основании следующих соображений. Та полуреакция, у которой меньшее положительное или большее отрицательное значение электродного потенциала, обладает большей способностью отдавать электроны, и поэтому уравнение цереписывается в противоположном направлении с изменением знака потенциала. В уравнении этой реакции вещества, стоящие перед знаком равенства и отдающие электроны, являются восстановителями. [c.263]

    Очевидно, что рассчитанные по уравнениям (2.40)—(2.42) значения термодинамических величин для чистой соли Ме Х будут равны их действительным значениям, если реакция в гальванической цепи проходит изотермично и обратимо и если в цепи отсутствует термоэлектрическая э. д. с. С1-Электрод приобретает отрицательный потенциал с большим трудом и только в определенных условиях [4, 9, 90]. Если измерения проводят в области высоких температур, термоэлектрические силы можно исключить (соединяют металлический электрод с графитовым стержнем). [c.62]

    Термодинамическую устойчивость, в случае электрохимической коррозии, принято оценивать по величине нормал1ьного равновесного потенциала металла (см. табл. 9). Меньшая величина отрицательного потенциала и большая величина положительного потенциала соответствуют большей термодинамической устойчивости металла. [c.145]

    Влияние обмасливания. Испытания проводились с шихтой с выходом летучих веш,еств 24%. Эту шихту загружали во влажном состоянии один раз без обмасливания, другой раз с добавкой 2% тяжелого масла № 2. Результаты приведены в табл. 108. Как и ранее, отмеченные различия между двумя балансами большей частью по величине не превышают ошибок опыта. Все же вероятно, что добавки 2% масла несколько повышают выход (весовой) смолы, бензола и газа. Полагают, что около 30% скрытой теплоты масла переходит в смолу, 50—60%—в газ и 10—20%—в бензол йли в сажу. Наблюдается соответственное увеличение объемного выхода газа (на 2—3%) и термодинамического потенциала газа (на 5—6%). [c.512]

    Неполяризуемый электрод отвечает такому электроду, для которого обмен потенциалопределяющими ионами между металлом и раствором совершается беспрепятственно, что наблюдается при больших токах обмена. Потенциал подобного электрода практически не изменяется под действием внешнего тока, пока последний мал по сравнению с током обмена. Идеально поляризуемым является электрод, у которого обмен ионами полн.эстью или почти полностью заторможен ц ток обмена близок к нулю. Для такого электрода уже ничтожно малый внешний ток будет изменять потенциал. Ртутный электрод в условиях снятия электрокапиллярных кривых ведет себя подобно идеально поляризуемому электроду, хотя ток обмена между металлической ртутью и раствором ее соли в состоянии равновесия очень велик. Это объясняете двумя причинами во-первых, тем, что область потенциалов, в которой снимают<я электрокапиллярные кривые, смещена в отрицательную сторону от равновесноп потенциала ртутного электрода, и по-это.му анодный процесс перехода ионов этути из металла в раствор термодинамически невероятен во-вторых, тем, что электрокапиллярные кривые снимаются в растворах, практически лишенных ионов ртут . В этих условиях катодный процесс перехода ионов ртути пз раствора на металл также невозможен, [c.236]

    Особо важное значение в химических процессах имеет термодинамический потенциал, т. е. изменение свободной энергии системы (А/ ). Выражая собой ту часть внутренней энергии системы, которая способна превращаться в полезную работу, величина ДР данного химического процесса служит тем самым мерой химического сродства реагирующих компонентов, т. е. мерой их реакционной способности. Чем больше абсолютная величина изменения свободной энергии или, что то же, чем больше значение максималыюи работы данного химического процесса, тем полнее они вступают между собой в химическое взаимодействие. Если мы говорим, что данные вещества реагируют между собой недостаточно энергично, то это означает, что они имеют небо,пьшое изменение свободной энергии в наблюдаемом процессе химического взаимодействия или, что то же, максимальная работа, которую требуется затратить на этот процесс, очень велика [c.167]

    Термодинамическая возможность этих реакций иллюстрируется графиком температурной зависимости изобарно-изотермического потенциала этих реакций (рис. 6). Нетрудно видеть, что примерно до 600 К изменение ДС° больше нуля, и, следовательно, расшеп-лецие парафинов термодинамически невозможно, а может происходить лишь алкилирование. При более высокой температуре положение меняется на обратное, причем при 800 К и выше расщепление является уже практически необратимым процессом. Суще-стзенно, что н-декан и вообще высшие парафины более склонны к расщеплению, чем низшие (кривая 4 лежит ниже кривой 3). [c.36]

    При еще меньших /г энергия притяжения оказывается большей по сравнению с энергией электростатического отталкивания, частицы начинают самопроизвольно сближаться и в конце концов коагулируют. Таким образом, величина энергетического барьера является ответственной за устойчивость коллоидной системы. На размер S оказывает влияние как потенциал поверхности частиц ( , так и толщина двойного электрического слоя X. Уменьшение устойчивости системы может происходить либо за счет уменьшения термодинамического потенциала поверхности либо за счет уменьшения толщины двойного электрического слоя. В случае нефтесодержащих дисперсий незначительные толщины двойного диффузионного слоя и ионные сферы затрудняют определение сил отталкивания и притяжения, что, в свою очередь, осложняет построение и анализ кривых энергий взаимодействия, однако оценка их влияния небезьште-ресна. [c.39]

    Постоянная катодная поляризация изделия, экс-плуатируюш,егося в среде с достаточно большой электропроводностью. Такая поляризация, осуществляемая от внешнего источника электрической энергии, носит название катодной защиты. В некоторых случаях катодная поляризация может осуществляться не постоянно, а периодически, что дает ощутимый экономический эффект. При катодной защите изделию сообщается настолько отрицательный электрический потенциал, что окисление металла становится термодинамически невозможным. [c.18]

    Показано [9-11], что основные термодинамические особенности МСС заключаются в бернуллиевском распределении состава по какому-либо свойству. Выделим в термодинамической системе бесконечно большое число компонентов И, каждый из которых характеризуется определенным значением термодинамического потенциала или какого-либо свойства. Определим вероятность существования в такой системе группы из М компонентов с определенным термодинамическим потенциалом или свойством, отличающимся от среднего свойства системы. Известно, что вероятность такого события определяется биноминальным (бернуллиевским) распределением  [c.49]

    Таким образом, если при данных температуре и давлении 1 моль вещества в одном агрегатном состоянии (кристаллической модификации) имеет больший термодинамический потенциал, чем в д )угом, это вещество будет [c.161]


Смотреть страницы где упоминается термин Потенциал термодинамический большой: [c.114]    [c.267]    [c.61]    [c.386]    [c.71]    [c.56]    [c.77]    [c.66]    [c.96]    [c.278]    [c.516]    [c.87]    [c.10]    [c.56]    [c.19]    [c.187]   
Термодинамика (1991) -- [ c.117 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал термодинамические

Термодинамический потенциа



© 2025 chem21.info Реклама на сайте