Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Е р е м и н. Кинетика и механизм реакций в электрических разрядах

    Большое многообразие типов и форм электрического разряда, возможность химической активации вещества в широком диапазоне давлений и температуры являются предпосылкой успешного осуществления химических превращений под действием электрического разряда. Нужно, однако, сказать, что, несмотря на огромное число работ, посвященных исследованию разнообразных химических реакций, электроразрядный метод осуществления химических реакций до настоящего времени еще не получил достаточно широкого практического применения, оказавшись в большинстве случаев нерентабельным и неспособным конкурировать с другими химико-технологическими методами. Вместе с тем весь имеющийся опыт проведения химических реакций в электрическом разряде различных типов приводит к заключению, что в результате более детального изучения кинетики и механизма реакций в разряде должны быть найдены условия проведения реакций, дающие лучшие выходы ценных продуктов, чем это было возможно до настоящего времени. [c.445]


    В настоящем издании, дополненном и расширенном, рассмотрены условия возникновения искрового, тлеющего, дугового, факельного, коронного, барьерного (тихого) и других электрических разрядов. Описаны аппаратура и методы проведения в разрядах различных химических реакций. В книге содержатся сведения о ряде новых технологических процессов. Введен новый раздел, посвященный реакциям в плазменных струях различных газов. Показаны известные преимущества проведения некоторых реакций в плазме. Сформулированы общие принципы химической кинетики для реакций в разрядах они применены к изучению ряда конкретных случаев электрокрекингу метана, окислению азота, синтезам озона и перекиси водорода, диссоциации двуокиси углерода и другим. На основе кинетических, спектроскопических и других данных обсуждены возможные механизмы химических реакций в разрядах и рассмотрены существующие теории электрической активации. [c.367]

    Монография состоит из десяти глав. В первой главе, посвященной общим кинетическим закономерностям химических реакций, рассматриваются простые и сложные реакции и химическое равновесие. Вторая глава посвящена вопросу о химическом механизме реакций. В ней рассмотрены экспериментальные методы изучения механизма реакций, вопрос о промежуточных веществах и реакции свободных атомов и радикалов. Третья глава посвящена теории элементарных химических процессов, включая теорию столкновений и метод переходного состояния. В четвертой главе рассматриваются бимолекулярные реакции различных типов, а также вопрос о зависимости скорости этих реакций от строения реагирующих частиц, и в пятой главе — мономолекулярные и тримолекулярные реакции. Шестая глава посвящена вопросу об обмене знергии при соударениях молекул, играющем основную роль в процессах их термической активации и дезактивации. В седьмой главе рассмотрены фотохимические реакции, в восьмой — реакции в электрическом разряде и вкратце, что, может быть, не соответствует их все возрастающему значению,— радиационнохимические реакции. Девятая глава посвящена цепным химическим реакциям и последняя, десятая, глава — кинетике реакций в пламенах. В этой главе рассматривается также вопрос о равновесиях в пламенах. [c.4]


    КИНЕТИКА И МЕХАНИЗМ РЕАКЦИЙ В ЭЛЕКТРИЧЕСКИХ РАЗРЯДАХ [c.3]

    При полярографировании растворов не очень слабых кислот на фоне нейтральных солей обычно наблюдается волна разряда ионов водорода. Изучению электрохимического восстановления ионов водорода посвящено большое число работ на его примере Фрумкин разработал теорию замедленного разряда, которая легла в основу современных представлений о кинетике электродных процессов, а также сформулировал основные положения влияния на эти процессы строения двойного электрического слоя [1]. Кинетика электрохимической реакции и особенно механизм следующих за этой реакцией стадий, приводящих к образованию молекулярного водорода, был предметом многочисленных долголетних дискуссий. [c.261]

    Глава XI. Кинетика и механизм реакций в электрических разрядах [c.383]

    КИНЕТИКА И МЕХАНИЗМ РЕАКЦИЙ В ЭЛЕКТРИЧЕСКИХ РАЗРЯДАХ 1. Общие положения [c.269]

    В плазме электрического разряда образуются ионы среды и материала электродов. Доля последних в общем балансе частиц зависит от физических свойств вещества электродов, формы разряда и его параметров. В зависимости от целей практического использования плазменного состояния вещества преобладание электродного компонента желательно, в других случаях его присутствие оказывается вредным. Электродный компонент может играть существенную роль в кинетике и механизме химических реакций при электрическом разряде как катализатор или как фактор, препятствующий протеканию реакции. Поэтому изучение механизма поступления вещества электродов в плазму разряда и особенно нахождение способов управления ходом этого процесса представляет собой актуальную задачу. [c.106]

    Соколик А. С. Механизм окислительных реакций в электрическом разряде. Сб. Проблемы кинетики и катализа. Хим. теорет. изд-во. Л., 1937, стр. 61—72. [c.252]

    Для исследования механизма и кинетики химической реакции, протекающей в неравновесных условиях, необходимо знать сечения всех рассматриваемых процессов, зависимость их от энергии реагирующих частиц, распределения этих частиц по энергиям и эволюции таких распределений во времени. Большую роль в неравновесной плазме электрических разрядов могут играть реакции с участием электронов и ионов. [c.238]

    Таким образом, и статистическая теория, и теория энергетического катализа не обоснованы с теоретической точки зрения и не дают адекватного описания химических реакций в электрических разрядах. Единственной альтернативой является использование неравновесной физико-химической кинетики. Несмотря на существенные трудности, возникающие при практической реализации описания химических реакций с помощью неравновесной кинетики, оно является единственным, имеющим эвристическую силу для предсказания механизмов и скоростей химических реакций в неравновесной плазме, в частности в неравновесных плазмохимических системах, в том числе и в электрических газовых разрядах различного типа. [c.284]

    Перенос реагирующих веществ в условиях электрохимической реакции может осуществляться по трем механизмам. Основным механизмом является молекулярная диффузия, т. е. перемещение частиц вещества под действием градиента концентрации. При прохождении через границу электрод — раствор электрического тока концентрация реагирующих веществ у поверхности падает и одновременно растет концентрация продуктов реакции. Возникают градиенты концентрации, которые приводят к диффузии разряжающегося вещества из объема раствора к электроду, а продуктов реакции — от поверхности электрода в объем раствора или в объем металлической фазы (например, при образовании амальгамы в ходе разряда ионов Т1+ на ртутном электроде). Поскольку концентрационные изменения вблизи поверхности электрода всегда сопутствуют протеканию электрохимической реакции, то молекулярная диффузия наблюдается во всех без исключения электродных процессах, тогда как другие механизмы массопереноса могут накладываться на процесс диффузии или же отсутствовать вовсе. Поэтому раздел электрохимической кинетики, в котором рассматриваются закономерности стадии массопереноса, называют диффузионной кинетикой. [c.172]

    В книге рассматриваются электродные процессы, протекающие с участием комплексов металлов в условиях равновесия и при наличии внешнего поляризующего тока. Описаны основные электрохимические методы, используемые при определении состава и констант устойчивости одноядерных комплексов металлов. Рассматривается кинетика электродных процессов, протекающих с участием комплексов металлов в условиях диффузионного контроля, при медленном протекании электрохимической стадии и при наличии медленных предшествующих химических реакций в растворе. Обсуждается механизм стадий разряда и ионизации, в которых участвуют комплексы металлов, а также влияние строения двойного электрического слоя на скорости реакций восстановления комплексов металлов. Одна из глав посвящена стационарным и нестационарным методам исследования кинетики электродных процессов. [c.2]


    В настоящее время имеется несколько упрощенных подходов к описанию химических превращений в неравновесной плазме электрических разрядов статистическая теория [67], теория энергетического катализа [584—587] и введение активных частиц [244, 582, 587]. Все эти подходы при описании химических реакций в неравновесной плазме сталкиваются с принципиальными затруднениями, обусловленными неприменимостью таких понятий, как единая температура системы (неравновесные распределения частиц по скоростям и уровням, многотемпературность систем, активные частицы и т. д.). Кроме того, они основаны на ряде принципиальных допущений например, пренебрежение обменом энергией между подсистемами, который велик по сравнению с запасом энергии в подсистемах,— в статистической теории (см. гл. I, 1) полное подобие механизмов реакций в разрядах и в классических низкотемпературных химических системах, за исключением ускорения реакций разложения под действием энергии электрического поля — в теории энергетического катализа [584—587]. Все эти затруднения могут быть преодолены естественным образом только при описании механизмов превращений с помощью неравновесной кинетики. Однако оно требует более детальных исследований механизмов химических реакций на модельных системах и создания адекватных моделей для описания процессов в неравновесной плазме [5,8,9,10,322]. [c.216]

    Кроме глав I и II, посвяш енных общим вопросам кинетики и механизма химических реакций, главы VI (Реакции комбинации и тримолеку-лярные реакции), глав VIII и IX (Фотохимические реакции и реакции в электрическом разряде), глав XI и XII (Цепные реакции и Процессы горения), подвергшихся существенной переработке и в значительной их части написанных заново, вновь была написана одним из авторов (Е. Е. Никитиным) глава III, посвященная теории элементарных процессов, и теоретические разделы в главе IV (Обмен энергии при молекулярных столкновениях), в главе V (Мономолекулярные реакции) и в главе VII (Бимолекулярные реакции). Кроме того, в монографию включена глава, посвященная радиационно-химическим реакциям (глава X), написанная крупнейшим специалистом в области химии высоких энергий В. Л. Таль-розе, которому принадлежит также 46 монографии (Радиационно-хи-мическое инициирование цепных реакций). [c.6]

    В отношении ступенчатого характера превращений метана в ацетилен можно отметить определенные черты сходства очерченного выше механизма реакции в электрическом разряде с механизмом термического распада метана. Как было показапо Касселем [818], все особенности кинетики пиролиза метана могут быть истолкованы на основе следующего механизма этой реакции  [c.452]

    Как было показано на стр. 95, два атома в газовой фазе не могут при столкновении соединиться друг с другом без участия третьего тела. Точно так же мало вероятно соединение атома или радикала с каким-либо другим атомом или радикалом с образованием одного устойчивого продукта, если тепло, выделяющееся при химической реакции, не может быть удалено каким-либо способом, так как и в этом случае должен соблюдаться закон сохранения момента и квантование внутренней энергии. Поэтому такие газовые реакции, как Нг-f-СЬ = 2H , которые инициируются электрическими разрядами, идут через свободные атомы и являются не простыми процессами соединения, а в основном реакциями замещения в газовой фазе, а также более сложными процессами, включающими тройные сго-лкновения или реакции на поверхности. Действительно, почти все газовые реакции представляют сложные цепные процессы с последовательными замещениями атомов. Данные о кинетике этих цепных реакций можно найти в других книгах . Мы коснемся только вопроса о доказательстве их атомного механизма. [c.98]

    Кондо [1147] изучил кинетику и механизм разложения дициана 2N2 в тихом электрическом разряде без протока газа при температуре 35° и начальном давлении дициана, равном 10, 20, 30 и 50 мм рт. ст. Результаты опыта показали, что дициан разлагается только по реакции  [c.439]

    Кинетика и механизм реакции Кольбарна и Кеннеди, несмотря на большое ее значение в химии фторидов азота, не изучены. Очевидно, что селективное отщепление только одного атома фтора от трифторида азота определяется структурой молекулы трифторида азота, для которой энергия диссоциации первого атома фтора меньше (56 ккал/моль) энергии диссоциации двух других атомов (см. гл. 2). Этим объясняется преимущественное направление конерсии в сторону тетрафторгидразина. Однако отрыв двух атомов фтора с образованием дифтордиазинов и трех атомов — с образованием азота также имеет место. Поэтому в продуктах реакции всегда содержится азот. Термически менее стабильные дифтордиазины, обладающие к тому же большей химической активностью по сравнению с тетрафторгидразином и трифторидом азота, разлагаются до азота. При более низких срёднегазовых температурах, например в условиях конверсии в электрическом разряде, дифтордиазины составляют основные продукты реакции наряду с тетрафторгидразином. [c.178]

    Превращение под влиянием атомного водорода. Кинетика реакции между параводородом и водородными атомами должна быть той же, как при рассмотренном выше механизме превращения, если получать водородные атомы при помощи внешних воздействий, например, электрическим разрядом в газе. В опытах Гейба и Гарбека (1931 г.) параводород взаимодействовал при температурах между 10 и 100° и давлении около 0,5 мм рт. ст. с водородом, содержащим от 3 до 19% водородных атомов. Для сравнения укажем, что водород содержит в результате термической диссоциации 10- —10- % водородных атомов при 700°. [c.100]


Смотреть страницы где упоминается термин Е р е м и н. Кинетика и механизм реакций в электрических разрядах: [c.45]    [c.317]    [c.425]    [c.6]   
Смотреть главы в:

Современные проблемы физической химии том 2 -> Е р е м и н. Кинетика и механизм реакций в электрических разрядах




ПОИСК





Смотрите так же термины и статьи:

Кинетика реакций в электрических разрядах

Реакции в электрических разрядах



© 2025 chem21.info Реклама на сайте