Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обессоливание пептидов

    При групповом разделении смеси высокомолекулярные соединения не фракционируются. Гель-фильтрация в данном случае, подобно диализу, используется для отделения белков от низкомолекулярных примесей и может заменить его. Обессоливание белков можно проводить на сефадексах G-25 и G-50, а также на биогелях Р6 и РЮ. Для обессоливания пептидов следует применять сефадексы G-10 и G-15 или биогели Р2 и Р4. [c.221]


    Фракционирование пептидов Препаративная хроматография с применением летучих буферных растворов Отделение пептидов и аминокислот от мочевины Автоматический колоночный анализ Обессоливание пептидов [c.316]

    Общая методика и обессоливание [21] фильтрация через гелевый фильтр протеинов, пептидов и аминокислот [22, 23] разделение пептидов [24]. [c.397]

    Этот метод основан на образовании множества электростатических связей между заряженными группами пептида и несущими противоположный заряд ионогенными группировками поверхности ионита. Благодаря амфотерному характеру пептидов в этом методе можно использовать катиониты или аниониты. Единственным ограничением является слабая растворимость пептидов в той или иной области pH. Если же смесь пептидов вообще не растворяется в обычных буферных растворах, то применяют буферы с высокой концентрацией мочевины или солянокислого гуанидина. Применение летучих буферных растворов в ионообменной хроматографии позволяет миновать стадию обессоливания. Б настоящее время ионообменная хроматография пептидов полностью или частично автоматизирована, а метод стал настолько универсальным, что позволяет разделить практически любую смесь пептидов. [c.389]

    Как уже было отмечено, многие пептиды, и особенно крупные фрагменты, сильно сорбируются на амберлите ЩС-50 при низких значениях pH. Это явление можно использовать для обессоливания длинных пептидов, которые после отмывания солей можно элюировать 50%-ной уксусной кислотой. [c.411]

    Другим недостатком метода восстановления натрием в жидком аммиаке является трудность выделения пептида в чистом виде, связанная с необходимостью удалять большое количество неорганических солей. Последние образуются как во время реакции, так и в результате обычно проводимого после завершения реакции разложения избытка металлического натрия добавлением уксусной кислоты [2247] или аммонийных солей, например хлористого аммония [642], иодистого аммония [2247] и ацетата аммония [1847]. Поэтому более целесообразно удалять избыток натрия путем добавления в реакционную смесь ионообменных смол, например дауэкс 50 (в Н+-форме) ([1516] ср. [1202]). К сожалению, при проведении этой реакции нельзя рекомендовать какие-либо общие методики для восстановления, а также для последующих стадий обессоливания и очистки. Разные исследователи предлагают использовать самые различные количества аммиака и натрия на 1 моль пептида. Время реакции и длительность сохранения синей окраски также колеблются обычно от нескольких минут до получаса. [c.42]


    Обессоливание в случае необходимости. Приготовление аналитической пептидной карты, окрашивание специфическими реагентами Гидролиз протеазой низкой специфичности Фракционирование пептидов электрофорезом или хроматографией на бумаге [c.345]

    Области применения полиакриламидных гелей те же, что и сефадексов (см. разд. 28). Для обессоливания наиболее пригодны гели марок от Р-2 до Р-10. Гель Р-2 успешно применяют для обессоливания пептидов и нуклеотидов. Сорбционные свойства полиакриламидов используют при разделении основных белков, нуклеотидов, нуклеозидов и нуклеиновых оснований методом адсорбцион ной хроматографии (В о п i 11 аС. А., Anal. Bio hem., 1969, v. 32, No. 3, p. 522— 529). [c.63]

    Этот выбор диктуется характером задачи, которая решается гель-фпльтрацией, и свойствами разделяемых молекул, в первую очередь их массами. Для обессоливаиия раствора макромолекул естественно использовать жесткие, достаточно мелконористые матрицы с крупными гранулами (последнее — для увеличения скорости течения), например сефадекс С-25 или биогель Р-б. Для обессоливания более мелких молекул можно воспользоваться сефадексами С-10 и С-15 или биогелями Р-2 и Р-4. Названные матрицы удобны и для смены буфера, в котором первоначально находится препарат, на тот, которым уравновешена колонка и производится элюция, или для освобождения биополимеров от радиоактивных низкомолекулярных предшественников. Близка к описанным н задача рассортировки смеси на две группы веществ — высокомолекулярных и низкомолекулярных (например, отделение белков от пептидов или нуклеиновых кислот от белков). Здесь, очевидно, следует вы- [c.133]

    Обессоливание и смена буфера с помощью гель-фильтрации широко используются в ходе очистки белков и пептидов для освобождения от сульфата аммония или в качестве промежуточной операции, подготавливающей препарат к последующему этапу хроматографии (ионообменной, аффинной или других видов). Если объем раствора белка изл еряется миллилитрами, то рутинную операцию его очистки нередко ведут вслепую . Однажды откалибровав небольшую колонку с сефадексом С-25, последующий отбор фракций, содержащих высокомолекулярные компоненты, производят по объему элюата, нередко просто путем отсчета капель. Соотношение объемов исходного раствора и колонки в этом случае может составлять примерно 1 10. В препаративных вариантах обессоливания, когда желательно максимально использовать объем колонки и избежать разбавления препарата, 5то соотношение можио увеличить до 1 3, контролируя выход хроматографических зон по УсГ-поглощению. Скорость элюции в таких опытах может быть значительной, порядка 20мл/см -ч (скорость продвижения фронта зоны очищаемого вещества по колонке — 20 см/ч). [c.137]

    Если электрофорез и хроматографию на бумаге можно отнести к микропрепаративным методам, то метод разделения смеси пептидов с помощью ионообменной хроматографии следует, пожалуй, считать макропрепаративным. Его главное преимущество заключается в том, что он позволяет обрабатывать большие количества материала и получать несомненно большие выходы фракций. Применение при ионообменной хроматографии летучих буферов дает возможность избежать трудоемкой процедуры обессоливания, которая осложняла ранее предложенные методики [49, 92]. Большим достижением в области ионообменной хроматографии является введение сферических смол. Их применение способствует увеличению скорости потока фракционируемых веществ через колонку и значительно сокращает продолжительность препаративного разделения. Сферические смолы в автоматических аминокислотных анализаторах обеспечивают воспроизводимую сравнительную хроматографию пептидов с высокой разрешающей способностью, т. е. позволяют автоматически проводить анализ методом отпечатков пальцев . [c.38]

    Гель-проникающая хроматография является практически единственным универсальным методом обессоливания, а также очистки пептидов от низкомолекулярных примесей (солей, моносахаридов, мочевины и др.). Исключение составляют очень короткие или триптофансодержащие пептиды. [c.397]

    Пептиды наносят на колонку в 0,1—0,2 н. уксусной или муравьиной кислоте, в 0,2%-ном карбонате или бикарбонате аммония. Тип геля выбирают так, чтобы пептид появлялся на выходе колонки вблизи свободного объема. Для этой цели наиболее всего подходят сефадексы 0-10, 0-15, 0-25 и биогели Р-2 и Р-6. Объем образца не должен превышать 7з—74 от объема столбика геля (например, в случае сефадекса 0-25). Элюировать удобно летучими буферными растворами, хотя выбор буфера зависит от растворимости пептида. В случае необходимости обессоливание ведут в дистиллированной воде, однако при этом происходит расширение зон, которое может привести к их перекрыванию. Для достижения полного обессоливания необходимо увеличить столбик геля. В зависимости от объема выхода пептида, нагрузки на колонку и объема образца скорость элюирования составляет примерно 7—20 мл/ч см . При работе на сильиосшитых гелях рекомендуется несколько увеличить высоту столбика геля (по сравнению с сефадексом 0-25). Пептиды обнаруживают в элюате колориметрически, спектрофотометрически, а выделяют упариванием при пониженном давлении или лиофилизацией. [c.397]

    Понятие молекулярное сито с большим правом, чем к цеолитам, можно отнести к полупроницаемым мембранам. В первых работах по диализу мембранами служили пленки животного происхождения [7]. В настоящее время для диализа применяют преимущественно пленки из целлюлозы (Visking или Kalle). Эти пленки проницаемы в основном лишь для небольших молекул. Именно поэтому диализ вот уже в течение нескольких десятилетий используется как стандартный метод обессоливания высокомолекулярных соединений в водных растворах. Набухание мембран в растворе хлористого цинка или механическое растягивание значительно увеличивают их проницаемость [8]. Через такие мембраны довольно быстро могут диффундировать даже белки с молекулярным весом до 100 000 [8—10]. Из агара и агарозы получают мембраны, которые в набухшем состоянии полупроницаемы для белков [11] и даже для вирусов [12]. Изме- рение скорости диффузии через модифицированные мембраны из целлюлозы, обладающие ярко выраженной избирательностью, открывает новые возможности для изучения пространственной структуры сахаров [13], аминокислот [14] и пептидов [15]. Для такого тонкого разделения Крэйг предложил термин дифференциальный диализ [16]. [c.13]


    Взаимодействие токсических пептидов из Amanita phalloides с гелями сефадекса также обусловлено наличием производных триптофана. Гель-хроматография в различных условиях позволила существенно упростить выделение этих природных токсинов и обнаружить значительно боль-шее число компонентов [175, 176]. Производные индола настолько сильно удерживаются сефадексом G-10, что при их обессоливании гетероциклические соединения элюируются после солей [177]. [c.192]

    Полимер применяют для извлечения из раствора слабоионизи-рованных кислот. Иониты получаются в виде шариков, зерен или гранул, прозрачных или окрашенных от желтого до черного цвета. Их применяют при обессоливании воды для котлов высоких давлений, опреснении воды для очистки сахарных растворов от неорганических солей и красящих веществ, удаления из крови ионов кальция, что значительно повышает ее сохранность, очистки антибиотиков (например, стрептомицина), витаминов и алкалоидов, для разделения смесей, содержащих до 50 различных аминокислот и пептидов, получения спектрально чистых редкоземельных элементов. Интересной областью применения ионитов является использование их в качестве основных и кислых катализаторов в органическом синтезе. Здесь открывается перспектива непрерывного ведения процесса путем пропускания смеси реагентов или их растворов сквозь слой ионита. [c.517]

    Собраны сведения о разделении фосфорорганическпх пестицидов, инсектицидов, стероидов, гиббереллинов, пигментов, сложных эфиров, пуринов, сахаров, мономеров и олигомеров в найлоне, тирнмидинов, фенолов, ароматических кислот, спиртов, алкалоидов, аминокислот, карбоновых кислот, смол, карбонильных соединений, амидов, пищевых консервантов, органических галогенпроизвод-ных, иодотирозинов и триглицеридов. Описано также разделение [68, 69] протеинов, ферментов, нуклеиновых кислот, углеводов, пептидов, липидов, гуминовых кислот, сырой нефти, полимеров, например полиэтилена, полибутадиена и ацетата целлюлозы. Гель-хроматография может быть применена для обессоливания растворов, для выделения лития из солевых рассолов [82], а также для удаления низкомолекулярных соединений из растворов высокомолекулярных веществ. [c.550]

    Перед хроматографическим разделением природных аминокислот, чтобы предотвратить размывание задней границы пятен и ее деформацию, иногда приходится удалять мешающие анализу вещества. Это в особенности относится к пробам мочи и гидролизатов белков или пептидов, содержащих большие количества солей. В настоящее время разработан и опробован ряд методов обессоливания а) электрофорез [3—5] б) обработка ионообменными смолами [6—11], сефадексом [12—14], нейтральными полистирольными смолами (поропак Q) [15—16], ионоудерживающими смолами [17, 18] и в) экстракция растворителями [19, 20]. Хискот и др. [18] сравнили степень извлечения аминокислот из ионоудерживающих смол био-рад АО 11А  [c.478]

    Конденсация фрагмента [Н (1 —2 )-6—8] с ранее описанным пентапептидом (Н 1—5) с помощью карбодиимидного метода привела с выходом 40% к разветвленному декапептиду [I (1 — 2 )-1—8], охарактеризованному количественным аминокислотным анализом и УФ-спектром. Формильную группу отщепляли действием 4 н. метанольного раствора НС1 в трифторуксусной кислоте или диметилсульфоксиде в течение 20 час при 20 [К ( —2 )-1—8] [2392]. Освободившуюся аминогруппу вновь количественно идентифицировали колориметрическим нингидриновым методом. Последующее омыление сложного эфира проводили обработкой 1,5-кратным избытком 1 н. едкого натра в диметилсульфоксиде в течение 20 час [L(l —2 )-1—8] образовавшуюся свободную карбоксильную группу определяли микротитрованием. Циклизацию синтезированного разветвленного декапептида осуществляли путем перемешивания при 20° раствора декапептида с 300-кратным избытком N, N -дициклогексилкарбодиимида в условиях высокого разбавления, причем выход неочищенного продукта реакции составил 20%. Защитные группы отщепляли действием натрия в жидком аммиаке. Полученный циклический пептид был очищен путем противоточного распределения (400 переносов вго/7-бутанол/0,1 н. соляная кислота) и хроматографирования на целлюлозном порошке (н-бутанол/ пиридин/ледяная уксусная кислота/вода, 30 20 6 24 м-бута-нол, содержащий 15% уксусной кислоты) с последующим обессоливанием на амберлите ШС-50 (ХЕ-64) в Н+-форме. [c.566]

    Чаще всего поступают следующим образом образец пропускают через слой катионита в Н -форме, а затем слой ионообменной смолы промывают водой. Через слой свободно проходят незаряженные соединения и кислоты, а неорганические катионы и аминокислоты остаются в колонке и извлекаются аммиаком (илп иногда НС1 Мюллер и сотрудники). Аммиачную вытяжку упаривают досуха. Остаток содержит аминокислоты, их амиды, амины, низшие пептиды, мочевину и креатинин. Слой катионита регенерируют затем щелочью, кислотой и водой. В той части продукта, которая не сорбируется на катионите и вымывается водой, содержится таурин и ряд пептидов, которые при необходимости можно фракционировать на анионите (Буланже и Бизерт [2] см. также стр. 468). Белки не поглощаются катионитом, поэтому обессоливанием на сульфированном полистироле можно в то же время депротешшзировать материа.л, содержащий небольшое количество белков. [c.404]

    Если необходимо отделить пептид от всех сопутствующих компонентов раствора, то вместо обессоливания, сопровождающегося большими потерями образца, следует проводить лиофи-лизацию. При этом обычно отдают предпочтение легко удаляе- [c.216]

    Гель-проникающая ВЭЖХ. Третий метод — гель-пропикающая ВЭЖХ —реже используется для аналитического картирования пептидов [66] главным образом из-за отсутствия колонок этого типа, пригодных для разделения сложных смесей небольших пептидов (М< 5000). Одпако имеются колонки, на которых можно фракционировать пептиды большего размера и белки они применяются на стадиях очистки или обессоливания белков, [c.239]

    Для концентрации пептидов, растворенных в больших объемах натрийацетатного буфера (pH 7,5), содержащего 4 М мочевину, используют колонки с обращенной фазой типа Li hrosorb s. Контроль элюата, содержащего соли уксусной и муравьиной кислот, обычно осуществляют с помощью флуоресцентного детектора. Быстрое обессоливание от мочевины и буферных компонентов достигается с помощью мини-колонок [278] или специальных патронов фирмы Waters [16, 392] (см. также разд. 6.2.3). [c.247]

    Контроль степени присоединения. По оконча1ши реакции конденсации жидкость над осадком проверяют на содержание остаточного (ненрИ соединенного) пептида. Отобранную пробу подвергают гидролизу и проводят аминокислотный анализ. Прн наличии пептида в растворе присоединение повторяют при других условиях. Если располагают достаточным коли чеством образца, то после обессоливания образец вновь используют в реакции конденсации. [c.393]


Смотреть страницы где упоминается термин Обессоливание пептидов: [c.139]    [c.396]    [c.397]    [c.198]    [c.316]    [c.283]    [c.382]    [c.274]    [c.76]    [c.382]   
Смотреть главы в:

Жидкостная колоночная хроматография том 2 -> Обессоливание пептидов




ПОИСК







© 2025 chem21.info Реклама на сайте