Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Области применения ионообменной хроматографии

    Область применения тонкослойной хроматографии практически безгранична, что объясняется возможностью большого выбора слоев различных сорбентов. Для разделения полярных веществ применяют слои адсорбентов, для гидрофильных — распределительную хроматографию на целлюлозе или силикагеле, для гидрофобных — импрегнированные слои (обращенные фазы). Можно применять также ионообменную или гель-хроматографию в тонком слое. Метод тонкослойной хроматографии в настоящее время применяют в основном для целей качественного анализа. Количественное определение возможно в такой же степени, как и в бумажной хроматографии. При проведении определений можно работать с очень небольшими количествами веществ, разделение проходит быстро и с умеренными затратами. Тонкослойную хроматографию в связи с этим можно применять для предварительных опытов по выбору фаз для разделения больших количеств веществ методом колоночной хроматографии. [c.361]


    ОБЛАСТИ ПРИМЕНЕНИЯ ИОНООБМЕННОЙ ХРОМАТОГРАФИИ [c.24]

    Значение реагентов в аналитической химии исключительно велико. Особенно важны органические реагенты, которые обладают большими возможностями и поэтому стали наиболее распространенными. Области применения реагентов в аналитической химии, в частности в неорганическом анализе, весьма многочисленны. Реагенты широко применяют в гравиметрических и титриметрических методах анализа как осадители и соосадители при разделении и концентрировании веществ их используют в качестве маскирующих веществ. Одна из обширных областей применения реагентов — экстракция. Реагенты нужны для ионообменных, электрофоретических и других методов разделения. Аналитические реагенты важны и для многих физических и физико-химических методов анализа,например амперометрии, радиоактивационного, химико-спектрального анализов. Перспективно применение органических реагентов в методах газовой хроматографии для быстрого разделения и определения элементов. [c.5]

    Каковы области применения, достоинства и недостатки а) тонкослойной хроматографии б) осадочной хроматографии в) ионообменной хроматографии  [c.278]

    Однако в Настоящее время термин ионная хроматография можно распространить на различные методы разделения неорганических ионов при помощи жидкостной хроматографии [76]. Следовательно, те же параметры, которые играют важную роль в ионообменной хроматографии, имеют в общем случае примерно такое же значение и в ионной хроматографии. Наиболее плодотворная область применения ионной хроматографии — это одновременное определение ряда распространенных неорганических анионов, включая как однозарядные ионы (фторид, хлорид, [c.116]

    Для аналитических и препаративных работ наиболее часто применяют динамический метод ионного обмена в колонках. Способы работы такие же, как в колоночной хроматографии (разд. 38.3.6.4). Следует кратко остановиться на некоторых специфичных областях применения ионообменной хроматографии. [c.249]

    Очистка и разделение белков (наряду с аминокислотным анализом) — основные области применения ионообменной хроматографии. Верно и обратное — в очистке любого белка этот вид хроматографии почти всегда занимает центральное положение. Поэтому при изложении общих соображений о выборе параметров хроматографического процесса в предыдущих разделах этой главы мы имели в виду прежде всего хроматографию белков. Был приведен соответствующий справочный и методический материал, отмечены аспекты, связанные с сохранением биологической активности и возможностью появления артефактов кажущейся утраты ферментативной активности и [c.301]


    Кроме перечисленных областей применения ионообменные полимеры широко используются в ионообменной хроматографии, основанной на различии в заряде, объеме и степени гидратации разделяемых ионов, и аналитической химии, для выделения драгоценных металлов, в качестве катализаторов [19], для извлечения алкалоидов из весьма разбавленных растворов, разделения рацематов, выделения н очистки витаминов и антибиотиков и т. д. В медицине иониты служат для удаления из крови ионов кальция, [c.592]

    Каковы области применения, достоинства и недостатки метода ионообменной хроматографии  [c.188]

    Основная цель применения ионообменной хроматографии для многочисленных задач технологии и анализа состоит в разделении смесей и поглощении отдельных компонентов их. Естественно, что и теория ионообменной хроматографии должна основываться на рассмотрении одновременного процесса обмена всех компонентов смеси. Однако до настоящего времени при расчетах как по статике, так и по динамике ионного обмена обычно исходят из законов статики обмена индивидуальных ионов. Степень такого приближения не всегда обоснована. Упрощенный подход объясняется в основном тем, что расчет реальных систем, представляющих собой смеси ионов, связан с громоздкими математическими вычислениями, которые для задач статики сводятся к решению систем нелинейных алгебраических уравнений, а для задач динамики— к решению систем нелинейных дифференциальных уравнений с частными производными. Многочисленные работы по статике обмена индивидуальных ионов свидетельствуют о том, что даже в этой сравнительно более простой области исследования окончательно не решены вопросы о механизме обмена и, следовательно, о количественных закономерностях, которым подчиняется обмен. [c.12]

    Предлагаемая вниманию читателей книга Ф. М. Шемякина и В. В. Степина по ионообменному хроматографическому анализу металлов может способствовать дальнейшему расширению областей применения ионообменной хроматографии в практике контрольных химико-аналитических, научно-исследовательских и заводских лабораторий, а также учебных институтов, связанных с металлургической промышленностью. [c.8]

    Ввиду того что применение ионообменной хроматографии явно преобладает в области разделения различных типов соединений, которые содержат аминогруппу, не удивительно, что бе- [c.287]

    Важной областью применения элюентной хроматографии является выделение индивидуальных примесей редкоземельных элементов (РЗЭ) при анализе лантаноидных препаратов. Затруднения в приложении к анализу разработанных ионообменных методов разделения РЗЭ, например, элюентной комплексообразовательной хроматографии на катионитах [715], заключаются в несоизмеримости количеств примесей и основы, что предопределяет неполноту разделения. В результате получают фракции элюата, только обогащенные примесями относительно основы. [c.316]

    В жидкостной хроматографии в качестве неподвижной фазы могут служить ионообменные вещества ионообменно-жидкостная хроматография). Область применения хроматографии в этом случае распространяется на электролиты. [c.13]

    Быстрому развитию науки в этой области способствовало широкое применение новейших методов анализа и разделения смеси веществ, основанных на использовании бумажной, колоночной и газожидкостной хроматографии, фракционного осаждения, инфракрасной спектроскопии, электрофореза, ионообменной хроматографии, гельфильтрации и др. Большое значение в этой области также имел накопленный опыт по синтезу специальных свидетелей для количественной хроматографии, особенно частично метилированных сахаров с известным расположением метоксильных групп. [c.6]

    В технологии"редких элементов ионообменная хроматография оказалась особенно полезной при разделении большой группы химически подобных редкоземельных металлов. Лишь ее освоение сделало доступными в значительном количестве индивидуальные лантаноиды, что стимулировало дальнейшее изучение их химии и области применения, а в конечном итоге расширило масштаб их добычи и производства. Можно определить четыре главные области применения ионного обмена в гидрометаллургии 1) обогащение или концентрирование 2) разделение  [c.135]

    Эту технику нельзя, конечно, четко выделить отдельно, поскольку она зависит от набивки колонны это лишь развитие и совершенствование ранее описанных методов. Однако данный метод имеет столь большие преимущества в эффективности и в скорости разделения, что целесообразно отдельно рассмотреть области его применения. Были применены набивки для ионного обмена, адсорбции и гель-фильтрации использование всей этой техники описано Леонардом для разделения некоторых цитокининов (производных аденозина), включая их разделение ня цис- и транс-то-меры [34]. Применение в области нуклеиновых кислот находится еще в стадии становления, но со временем этому методу несомненно предназначено сыграть важную роль в разделении смесей нуклеозидов, а колонки для гель-фильтрации будут широко применяться при обессоливании элюатов нуклеозидов после ионообменной хроматографии. [c.75]


    Ионообменная хроматография дала возможность автоматизировать анализ аминокислот, что открыло новую эпоху в биохимии белка и ряде других областей молекулярной биологии. Однако при применении классической ионообменной хроматографии на колонках чрезвычайно большую роль играет фактор време ни. Основные проблемы в методах хроматографии на колонке возникают при оценке фракционирования и проведении параллельных экспериментов. [c.242]

    Одна из наиболее важных и широко распространенных областей применения ионообменников связана с разделением смесей ионов. Даже очень сложные смеси ионов, присутствующих в анализируемых растворах, можно разделить на индивидуальные компоненты методом ионообменной хроматографии с использованием соответствующей среды (водной, водноорганической или неводной) и подходящих элюентов. Очень часто эти разделения выполняются быстрее и с большей точностью, чем другими методами. [c.145]

    Фракционирование аминокислот — важная область применения ионообменной хроматографии, обеспечивающая в первую очередь анализ алпиюкислотного состава белков и пептидов после их исчерпывающего гидролиза, а также физиологических жидкостей и пище- [c.295]

    Ионообменная хроматография широко применяется в фармации и биохимии. Более детально о работе с ионитами и о возможностях их применения в упомянутых областях исследования можно познакомиться в обзорных работах [1, 9, 10, 30, 37, 46]. [c.24]

    Сополимеры стирола и дивинилбензола, сшитые в присутствии инертного разбавителя, находят широкое применение в различных областях хроматографии. Это прежде всего область ионообменной хроматографии. Макропористые смолы не заменяют обычные стандартные смолы. И те и другие используются в определенных областях. Однако макропористые смолы имеют исключительные свойства. Вследствие большой пористости диффузия реагентов в них облегчена, поэтому в макропористые смолы можно ввести большое число функциональных ионогенных групп, т. е. увеличить их обменную емкость. [c.8]

    В области технических применений ионообменной хроматографии важное значение имеют работы Ю. М. Кострикина и др. (1934, 1946, 1948), Ф. Г. Прохорова и др. (1940, 1947), А. А. Кота (1939), Ю. Ю. Лурье, В. А. Клячко (1945) п В. П. Астафьева (1933) по очистке воды для питания котлов, работы Я. К. Сыр-кина и Кринкиной (1937) и К. А. Янковского (1940) по извлечению меди из рабочих вод производства искусственного шелка. [c.13]

    Поэтому до настоящего времени не нашли широкого распространения в области полисахаридов такие виды хроматографии, как распределительная и адсорбционная (отдельные примеры см." ). Более успешным оказалось применение ионообменной хроматографии для разделения кислых и даже нейтральных полисахаридов. Ионообменниками служат обы.ч,но аниониты, полученные модификацией целлюлозы, например ДЭАЭ-целлюлоза. Для элюирования полисахаридов с колонок используют растворы солей или буферные растворы разной концентрации прочно удерживаемые полисахариды элюируют разбавленными растворами щелочей. Таким споссбом легко удается отделить кислые полисахариды от нейтральных, например, пектиновую кислоту от сопутствующего ара-бинана или сульфированные полисахариды водорослей от крахмалоподобных примесей в ряде случаев при таком способе разделения удается освободиться от примесей белка. Нейтральные полисахариды можно разделить, применив ДЭ.ЛЭ-целлюлозу в боратной форме, при вымывании боратным буфером . Описано также успешное применение ЭКТЕОЛА- [c.486]

    При определении структуры индивидуальных нуклеотидов часто используют химический или ферментативный гидролиз, а также дефосфорилирование до соединений известной структуры. Исторически сложилось так, что гетероциклические основания и углеводные составляющие основных нуклеотидов были уже известны и нерешенным оставался лишь вопрос о положении фосфориль-ного остатка в углеводной части молекулы [14]. Эта проблема была решена сравнительно легко для 5 -нуклеотидов и для дез-оксинуклеозид-З -фосфатов. Однако быстрое взаимопревращение рибонуклеозид-2 - и -З -фосфатов оказалось серьезной проблемой для исследователей, начинавших работы в этой области. Применение ионообменной хроматографии для разделения компонентов гидролизата дрожжевой РНК позволило однозначно определить положение фосфорильных остатков в этих нуклеотидах. Для всех четырех основных нуклеотидов были получены пары изомеров (а) и (Ь). Осторожный гидролиз адениловых кислот (а) и [Ь) дал соответственно рибозо-2- и -3-фосфат, которые были идентифици- [c.137]

    Другие макропористые смолы марок XAD-2 и XAD-7, которые почти не обладают ионообменными свойбтвами, были использованы для заполнения колонок высотой 7 см и диаметром 1,5 см при поглош,ении органических примесей из колодезной воды [66]. Колонки при этом были непосредственно соединены с источниками подачи воды. Использовавшиеся в качестве модельных соединений бензойную кислоту, фенол, крезол, фенилендиамин и нафталин удается последовательно вымыть из, колонки растворами бикарбоната натрия (бензойная кислота), едкого натра (фенол и крезол) и метанолом (фенилендиамин и нафталин). Из загрязненной колодезной воды было выделено и идентифицировано 17 соединений, включая гексанол, бензол, бензолсульфокислоту, анилин и кетоны. Содержание этих примесей достигало порядка 10 г/л. Цитируемая работа [66] не относится к области истинно ионообменной хроматографии, однако использовавшиеся поглотители являются ионообменными полимерами, что, в свою очередь, иллюстрирует, насколько трудно в настоящее время четко разграничить области применения ионообменной хроматографии. [c.516]

    Распределительная хроматография занимает промежуточное положение между адсорбционной хроматографией и хроматографией на обращенных фазах. Распределительные системы предпочтительны при разделении членов гомологического ряда. Такое разделение можно провести и в системах с обращенной фазой. Методом адсорбционной хроматографии можно разделить только низшие члены гомологического ряда. Оптические изомеры удается разделить только в форме пар диасгереомеров (см. рис. VI.21), что в ( щем не представляет трудностей. Для расщепления рацематов в принципе пригодны оптически активные подвижные фазы. Подобные фазы для классической колоночной хроматографии известны только в форме производных целлюлозы [2, 3], для жидкостной хроматографии при высоком давлении они не пригодны. Область применения ионообменной хроматографии ограничена, так как использовать можно лишь чисто водные системы. В таких системах можно разделять те ионы или соединения, которые легко и обратимо образуют комплексы (обмен лигандов) с ионами, связанными с ионообменником. Кроме того, на органической матрице ионообменника может также происходить неионообменная сорбция. Если в системах с ионообменниками к водным элюентам добавляют органические растворители, то элюенты разделяются и образуется распределительная система. Если бы дополнительно учитывали обе эти возможности разделения на ионообменниках, то возможности использования этого метода были бы более многообразны, чем это следует из табл. Х.1. [c.218]

    Концентрирование малых количеств примесей в присутствии преобладающего количества основного вещества при помощи ионообменной хроматографии пока мало используется. Во многих случаях решение таких аналитических задач можно осуществить методом экстракционной хроматографии. Предварительное концентрирование следов злементов является одной из наиболее интересных, на наш взгляд, областей применения экстракционной хроматографии. Этот многоступенчатый метод позволяет осуществлять одновременное абсолютное концентрирование (очистка растворов, разделение компонентов, находящихся в микро- и макросоотношениях), а также относительное концентрирование (соответствующее количественному разделению компонентов, находящихся в сопоставимых соотнощениях). [c.413]

    Салдадзе К. М., ДемонтерикЗ, Г., Климова 3. В. В кн. Исследования в области ионообменной хроматографии . Труды совещания по применению ионообменной хроматографии в медицинской и пищевой промышленности. М., Изд-во АН СССР, 1957, стр. 106. [c.192]

    Если электрофорез и хроматографию на бумаге можно отнести к микропрепаративным методам, то метод разделения смеси пептидов с помощью ионообменной хроматографии следует, пожалуй, считать макропрепаративным. Его главное преимущество заключается в том, что он позволяет обрабатывать большие количества материала и получать несомненно большие выходы фракций. Применение при ионообменной хроматографии летучих буферов дает возможность избежать трудоемкой процедуры обессоливания, которая осложняла ранее предложенные методики [49, 92]. Большим достижением в области ионообменной хроматографии является введение сферических смол. Их применение способствует увеличению скорости потока фракционируемых веществ через колонку и значительно сокращает продолжительность препаративного разделения. Сферические смолы в автоматических аминокислотных анализаторах обеспечивают воспроизводимую сравнительную хроматографию пептидов с высокой разрешающей способностью, т. е. позволяют автоматически проводить анализ методом отпечатков пальцев . [c.38]

    В этом кратком разделе невозможно рассмотреть все области применения жидкостной хроматографии. Мы сосредоточили внимание прежде всего на анализе низкомолекулярных органических веществ методом адсорбционной жидкостной хроматографии. Гелевая и ионообменная хроматография рассматриваются в меньшей степени совсем не затронуты специальные области жидкостной хроматографии. Мы старались дать такук> информацию, которая для аналитика-практика особенно важна и которая в литературе не всегда достаточно освещена. [c.230]

    Количественное хроматографическое разделение смесей, являющееся целью хроматографического опыта, сближает аналитическое и препаративное применение хроматографии это дало основание М. М. Сепявипу кратко затронуть в статье вопрос получения ряда редких металлов методом ионного обмена и ионообменной хроматографии. Однако в последние годы области применения ионообменных процессов значительно расширились и, в частности, захватили область органических соединений. В настоящее время хроматографически разделяют смеси не только простейших, способных к диссоциации органических соединений, например, карбоновых кислот, но и главным образом сложные смеси алкалоидов, аминокислот и пр. В сборнике этому вопросу посвящена статья Г. В. Самсонова, содержащая обширный материал по специфике иоипого обмена больших молекул органических веществ и в значительной степени освещающая современные, во многом принадлежащие самому автору, исследования в области ионообменного выделения различных индивидуальных антибиотиков в чистом виде. [c.8]

    Теоретически любые растворимые вещества можно разде--лить с помощью подходящего метода жидкостной хроматографии. Ионообменная хроматография и электрофорез применимы в тех случаях, когда соединения имеют ионный характер или содержат ионогенные группы. Область применения гель-хроматографии ограничена соединениями с относительно высокой молекулярной массой (10 —10 дальтон). Адсорбционная и распределительная хроматография используются для разделения веществ со средней молекулярной массой (10 —10 дальтон),. и поэтому эти методы представляют особый интерес для хими-ков-органиков. Небольшие количества веществ можно разделить с помощью различных методов плоскостной хроматографии. Преимуществом последних является возможность анализа одновременно нескольких образцов, а также низкая стоимость, оборудования. Методы плоскостной хроматографии отличаются очень простым аппаратурным оформлением, однако требуют от экспериментатора определенных навыков. Разработано несколько вариантов препаративной плоскостной хроматографии и количественного анализа хроматограмм, однако они в известной степени несовершенны. Современная колоночная хроматография обладает теми же достоинствами и недостатками, что и газовая хроматография, однако в отличие от последней ее можно рекомендовать не только для анализа, но и для препаративного выделения веществ, особенно если эти вещества недостаточно термостойки, разлагаются на свету или легко окисляются. [c.31]

    Развитие хроматографии обеспечило возможность изучения влияния химии поверхности на межмолекулярные взаимодействия адсорбента главным образом с изолированными молекулами самых разнообразных веществ, адсорбирующихся из газовой фазы и жидких растворов в области малых заполнений поверхности, и, вместе с тем, потребовало создания возможно более однородных адсорбентов. В связи с этим теоретическая часть курса ограничена расчетами для однородных адсорбентов и в пособие не включены адсорбенты с сильно неоднородной поверхностью, не имеющие непосредственного применения в хроматографии. В нем не рассматриваются также теории ионообменной и ситовой (гель-фильтра-ционной) хроматографии, по которым имеются специальные руководства. Вместе с тем в пособии даются необходимые сведения о макропористых неионогенных и ионогенных адсорбентах и химических реакциях модифицирования их поверхности, которые облегчают читателю ознакомление с этими важными хроматографическими методами. [c.4]

    Во-вторых, в книге недостаточно отражены современные достижения в области аналитического применения ионообменных процессов. Формально это выражается в том, что в библиографии цитируется мало работ, появившихся в печати за последние годы (число работ, опубликованных с 1978 г., не превышает 15% от общего числа). Это приводит к ряду заметных пробелов. Так, явно недостаточное внимание уделено селективным (хе-латообразующим) сорбентам, столь интенсивно и успешно разрабатываемым и используемым в настоящее время в аналитических и даже технологических целях. Практически не упоминаются волокнистые ионообменные сорбенты, весьма эффективные в анализе разнообразных неорганических объектов. Наконец, отсутствует описание и даже упоминание о сравнительно новом методе — ионной хроматографии, являющейся самым современным и высокоэффективным методом ионообменного анализа смесей близких по свойствам компонентов, который очень быстро развивается и имеет, несомненно, большое будущее. [c.7]


Библиография для Области применения ионообменной хроматографии: [c.228]    [c.379]   
Смотреть страницы где упоминается термин Области применения ионообменной хроматографии: [c.452]    [c.5]    [c.80]    [c.5]   
Смотреть главы в:

Ионообменные разделения в аналитической химии -> Области применения ионообменной хроматографии




ПОИСК





Смотрите так же термины и статьи:

Ионообмен применение

Ионообменная хроматографи

Область применения

Применение ионообменной хроматографии

Хроматография ионообменная

Хроматография области применения

Хроматография применение



© 2024 chem21.info Реклама на сайте