Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы вольфрама и молибдена с железом

    С помощью электролиза можно получать покрытия в виде сплавов, содержащих такие металлы, которые не выделяются на катоде в чистом виде или выделяются с очень малыми выходами по току (например, вольфрам, молибден, рений и др.). Были разработаны условия электролитического получения сплавов вольфрам-железо, вольфрам-никель, вольфрам-кобальт, вольфрам-хром, молибден-никель и др. [c.431]


    Другой причиной, препятствующей определению р и а двойных сплавов на основе железа, является высокая химическая активность ряда элементов. Нет пока материалов, которые могли бы контактировать, не взаимодействуя, с жидким титаном, цирконием, ванадием и рядом лантанидов. Изучение р и сг двойных систем на основе железа во всем концентрационном интервале также ограничено высокой температурой плавления одного из компонентов (бор, гафний, ниобий, тантал, молибден, вольфрам, рений, рутений, родий, осмий, иридий). [c.39]

    На основе описанных методик с помощью радиоактивных изотопов Мо , Ре , N1 , проведено исследование диффузии и электропереноса обоих компонентов в сплавах системы молибден — вольфрам (всего И сплавов), в сплавах железа, содержащих 2 и 4 ат.% никеля в широких интервалах температур. [c.205]

    Габером и его сотрудниками было испробовано большое число катализаторов церий и сплавы или специальным образом приготовленные смеси его с железом, марганцем, лантаном марганец, приготовленный из амальгамы марганца осмий, рутений, уран, вольфрам, молибден и другие металлы. Вот, несколько дан ных, касающихся применения катализаторов, величины давления и полученных концентраций аммиака при различных, постоянно поддерживаемых температурах реагирующих веществ. Смесь азота и водорода содержала 3 об ема водорода на один об ем азота. [c.111]

    Среди металлических материалов исключительное полол<ение занимают сплавы на основе железа. Сплавы железа с содержанием углерода до 2% принято называть сталью, а свыше 2% — чугуном. Используемые в настоящее время в промышленности стали обычно делят на углеродистые и легированные. Создание новых н интенсификация существующих промышленных процессов заставляет все больше использовать легированные стали, которые обладают повышенной коррозионной стойкостью. Массовая доля средне- и высоколегированных сталей в настоящее время составляет почти 20% от общего количества производимых промышленностью черных металлов. Для легирования используют такие элементы, как никель, хром, молибден, вольфрам, ванадий, кобальт, марганец, медь, титан, алюминий. Сплавы железа с хромом составляют основу нержавеющих сталей, среди которых [c.136]

    Сравнение устойчивости р-твердого раствора сплавов титана, содержащих примерно одинаковое количество легирующих элементов, таких как рений, никель, железо, молибден, вольфрам, хром, показало, что р-твердый раствор титана с вольфрамом более устойчив, чем р-твердый раствор титана с молибденом, железом и хромом, но менее устойчив, чем р-твердый раствор титана с рением и никелем. [c.9]


    В печах с рабочей температурой до 1000—1200° С применяют нагревательные элементы из нихрома или железо-хромо-алюминиевых сплавов, от 1200 до 1350° С — карборундовые нагревательные элементы или расплавленные соли, при более высоких температурах — в вакууме или соответствующей защитной среде применяют уголь, графит, вольфрам, молибден. В зависимости от профиля сечения материала выбирают конструкцию нагревательного элемента и способ его крепления в камере печи. На рис. 18 показаны некоторые конструкции нагревательных элементов и способы их крепления на стенках печи. Нагревательные элементы из проволоки изготовляют в виде спиралей, которые укрепляют на крючках или керамических опорах. Ленточные нагревательные элементы имеют форму петель и подвешиваются или укладываются на опорах на стенках печи. [c.45]

    МЕДИ СПЛАВЫ — сплавы на ото ве меди. В виде бронзы применялись за 3000 лет до н. э. В жидком состоянии медь сплавляется со многими элементами, с большинством из них — в любом соотношении. Лишь вольфрам, молибден, осмий, рутений и тантал практически не сплавляются с нер. В твердом состоянии макс. растворимость элементов (в альфа-твердом растворе меди) изменяется в очень широких пределах от сотых и десятых долей процента (хром, ниобий, свинец, ванадий, цирконий) до процентов (серебро, алюминий, мышьяк, бериллий, кадмий, кобальт, железо, магний, кремний, титан и др.) и десятков процентов (индий, олово, цинк). Неограниченно растворяются никель, золото, марганец, палладий и платина. Однако с золотом, марганцем, палладием и платиной М. с. в твердом состоянии претерпевают превращения. С увеличением концентрации легирующего элемента в альфа-твердом растворе меди повышается мех. прочность сплавов их теплопроводность и электропроводность уменьшаются (менее всего при легировании серебром). К вредным примесям относятся висмут, сурьма, свинец и углерод (в медноникелевых сплавах), к-рые приводят к хрупкости. Стойкость против коррозии М. с. зависит от природы легирующего элемента и окружающей среды. Повышают стойкость никель, олово и алюминий. С понижением т-ры раст  [c.780]

    Быстрое развитие ракетной техники, реактивной и турбореактивной авиации привело в последние годы к увеличению потребности в материалах, характеризующихся хорошими прочностными характеристиками при высоких температурах. Такие материалы в отличие от жаростойких называются ж а р о -п р о ч н ы м и. В принципе, жаростойкость не всегда сопутствует жаропрочности. Например, сплавы на основе железа или никеля, легированных хромом или алюминием, весьма стойки в окислительных средах при высокой температуре, но характеризуются значительным ухудшением механических свойств с ростом последней. С другой стороны, тугоплавкие металлы (вольфрам, молибден, осмий), сохраняющие при высоких температурах свои механические свойства, легко окисляются, причем часто с катастрофической скоростью. [c.74]

    По аналогии с изготовлением спеченных спаев вольфрам— стекло была разработана технология изготовления спеченных металлокерамических спаев. В качестве металла может быть использован сплав молибден— железо. Железный порошок может быть заменен марганцовым. Последний метод известен под названием метода изготовления активированного молибдено-марган-цового спая. [c.148]

    Основными легирующими элементами в промышленных сплавах титана являются алюминий, хром, марганец, молибден, вольфрам, ванадий, железо и олово  [c.38]

    Из аналогичных электролитов можно осадить и другие тройные сплавы, например железо—вольфрам—молибден, никель—вольфрам—молибден, кобальт—никель—вольфрам, железо—кобальт—вольфрам и железо—никель—вольфрам 1224]. [c.104]

    Особо важное значение имеют сплавы, в состав которых входит железо. Применение этих сплавов чрезвычайно разнообразно в зависимости от технического назначения, изготовляются специальные стали, содержащие такие редкие металлы, как ванадий, вольфрам, молибден и др. Например, сталь для изготовления ружейных стволов содержит 1—3 /о W сталь для резцов—3—3,5 /о W содержание в сталях молибдена колеблется от 2 до 2,5 /о точно так же колеблется и содержание ванадия. [c.320]

    В частности, особый интерес за последние годы приобрело электролитическое получение жаростойких сплавов [3—5] в связи с тем, что покрытия из жаростойких сплавов имеют значительные экономические и конструктивные преимущества. Вместо изготовления всей детали из дорогостоящего и тяжелого материала можно нанести электролитическое покрытие сравнительно небольшой толщины на другие, более легкие и дешевые материалы. Кроме того, многие редкие и необычные материалы, которые при электролизе водных растворов не удается получить в чистом виде, можно осадить в виде сплавов с другими металлами [3, 6], например, сплавы вольфрам — железо, вольфрам—никель, вольфрам — кобальт, молибден — никель, титан — железо и др. [c.176]

    Благодаря использованию ценных свойств индивидуальных металлов покрытиям можно придавать путем совместного электроосаждения металлов в виде сплавов разнообразные свойства. В виде сплавов можно получать электролитические покрытия металлами, которые не выделяются из водных растворов на катоде, как например, вольфрам, молибден, рений и др. Таким способом получают жаростойкие покрытия сплавами вольфрам — железо, вольфрам — никель, вольфрам — кобальт, вольфрам — хром, молибден-—никель и др. [c.234]


    Результат титрования при анализе стандартного образца № 38 ферросилиция свидетельствует о том, что около 2/з кремния перешло в раствор в виде 51 +. Металлические медь, алюминий, ванадий, молибден, вольфрам, марганец кобальт и никель в результате взаимодействия с 0,25-н. раствором хлорного железа переходят соответственно в Сц2+, АР+, У +, Мо +, / + Мп2+, С02+ и N 2+. Аналогично происходит взаимодействие этих металлов с раствором хлорного железа, если эти металлы входят в состав сплавов на основе железа. При взаимодействии металлического алюминия и марганца с раствором хлорного железа частично выделяется водород. Титан, цирконий, кремний, фосфор и хром, содержащиеся в некоторых сплавах на основе железа, переходят соответственно в Т1 +, 2г +, 51 +, Р + и Сг + ниобий, вероятно, переходит в N5 +. Углерод, входящий в состав сплавов на основе железа, пе реагирует с раствором хлорного железа. [c.99]

    Обычно на практике классифицируют металлы, исходя из общих сырьевых, технологических и потребительских признаков. Принято разделение металлов на черные и цветные. К черным металлам относятся железо и его сплавы, а также металлы, применяемые главным образом в сплавах с железом—хром, марганец. К ц в е т н ы м—относятся все остальные металлы, которые, в свою очередь, подразделяются на тяжелы е—медь, никель, свинец, олово, цинк л е г к ие—алюминий, магний, калий, натрий малы е—сурьма, ртуть, висмут, кадмий редкие—вольфрам, молибден, ванадий, кобальт, ниобий, тантал, титан, бериллий, литий и др. рассеянны е—германий, рений, индий, галлий и др. благородные—платина, палладий, иридий, осмий, рутений, золото и серебро. [c.113]

    Разработанный 3. С. Мухиной метод позволяет полярографически определять титан и железо. После растворения навески в смеси азотной и соляной кислот проводят полярографирование титана и железа на одной поляризационной кривой на фоне 15%-ного щелочного раствора трех-замещенного цитрата натрия. Метод применим для анализа сложных сплавов, содержащих молибден, ванадий, вольфрам и хром, только после окисления хрома персульфатом аммония и отделения затем гидроокисей титана и железа раствором щелочи. [c.279]

    Хотя развитие производства сплавов в порошке имеет интересные перспективы, основные находящиеся уже теперь в употреблении металлические порошки представляют собой чистые металлы медь, никель, кобальт, хром, алюминий, магний, кремний, свинец, цинк, железо, вольфрам, молибден, тантал, серебро, золото, платину и иридий. [c.157]

    Fe), мелкой железной обсечки или стальной (ннзкоуглеродистой) стружки, ферросиликоалюмипия (60—65% Si, 8—12% Al) и флюсов — извести (95% СаО), плавикового шпата (80— 90% aFj). Шихту расплавляют теплом экзотермических восстановительных реакций в футерованной шахте (ковше). Сплав разливают в изложницы и охлаждают под слоем шлака, поставляют в измельченном виде. На его основе выплавляют лигатуры, содержаш пе молибден, железо, хром, никель, вольфрам и др. элементы. [c.643]

    ЭЛЕКТРОВАКУУМНЫЕ МАТЕРИАЛЫ — материалы, предназначенные для эксплуатации в условиях вакуума илп разреженных газов. Про.. , производство больщинства Э. м. освоено в СССР в 50-х гг. Э. м. подразделяют па электродные (материалы катодов, анодов, сеток, кре-нежпых деталей в электр, н электровакуумных приборах и т. п.) и электроизоляционные (стекло, электрокерамика, в т. ч. люминофоры). К электродным Э. м. относятся тугоплавкие металлы (вольфрам, молибден, тантал, пиобий, титан, цирконий, рений), черные и цветные металлы (железо, никель, медь), а также сплапы на их основе. Осн. марки сплавов па основе переходных метал- [c.767]

    Из различных предложенных поверхностей нагрева следующие уменьшают отложение угля неглазурованный фарфор, пропитанный окислом или окислами хрома, вольфрама, ванадия или урана хром, вольфрам, молибден или сплавы этих металлов, или же граф ит , элементарный кремний огнеупорные материалы (шамот или карбид кремния), покрытые глазурью, состоящей из силиката, фосфата или бората щелочного или щелочноземельного металла, меди, марганца, свинца ИЛИ хрома 82 сплавы железа, содержащие 10—16% алюминия и до 6% хрома (Ferralloy) [c.154]

    При этой технологии (табл. 2-42) поК рытие изготавливается из суспензии металлического порошка (или смеси порошков) в биндере. Порошки могут состоять только из металлов, нерастворяющихся или мало растворяющихся в соединительных сплавах (разд. 2, 5-3) и образующих прочное соединение с керамикой. Применяемыми при этом металлами являются молибден, вольфрам, марганец, железо, хром, медь, никель, рений. К металлическим по рошкам иногда добавляют небольшое количество окисло1в (например, окисел марганца), чтобы облегчить процесс окисления, необходимый для образования соединения. Можно применить окисел молибдена вместо молибденового порошка либо смесь 10КИСЛОВ молибдена п марганца (в соотношении 20 1). [c.148]

    Легированные стали. Как разнообразны применения стали, так разнообразны и предъявляемые к ней в каждом случае требования. От строительной или конструкционной стали (арматура зданий, мосты, суда) требуется высокая прочность и хорошая свариваемость, от инструментальной (режущий, мерительный и штамовый инструмент) — высокая твердость и износоустойчивость, от стали других назначений — упругость, жаростойкость, жароупорность, кислотоупорность, высокие магнитные свойства (сердечники электромагнитов) или, наоборот, немагнитность. Придание стали заданных механических, физических или химических свойств достигается введением в нее добавочных, легирующих элементов, по одному, по два и более. В качестве легирующих элементов в металлургии используются главным образом металлы старших групп периодической системы ванадий, хром, марганец, вольфрам, молибден, никель, а из металлоидов кремний и бор. Легирующие элементы либо образуют в массе сплава химические соединения с его другими составными частями, чаще всего карбиды, либо же при затвердевании сплава кристаллизуются в виде твердого раствора в а-, а иногда в у-железе. Так, при затвердевании высоколегированных никелевых и марганцевых сталей превращения у-железа в а-железо не происходит, и затвердевшая сталь представляет твердый раствор никеля или марганца в у-железе. Большинство легированных сталей и прочих промышленных сплавов, как дюралюминий, электрон, латунь, бронза, имеют структуру твердых растворов. [c.699]

    Наиболее убедительно это подтверждают данные автоионной микроскопии. При исследовании кристаллов углерода, 20 металлов (вольфрам, молибден, ниобий, тантал платина, родий, иридий, золото, железо, никель, кобальт, лантан и др.), а также их сплавов, карбидов и боридов методом автоионной микроскопии обнаружено, что при температуре, составляющей 1/2—2/3 от температуры плавления, приповерхностный монослой кристаллов имеет упаковку, близкую к нормальной упаковке в их решетке [25—28]. Периодичность плотноунакованного слоя нарушается довольно редко вакансиями и адсорбированными атомами, удерживаемыми в непосредственной близости от этого монослоя и способными перемещаться вдоль поверхности. При изучении микрокристаллов перечисленных металлов были выявлены плоские грани размером —10 см, разделенные четкими ребрами (рис. 4.4), причем концентрации вакансий и адсорбированных нримесей на гранях разных типов не одинаковы [28, 29]. [c.62]

    Из всех известных в настоящее время металлов больще половины можно О саждать на другие металлы электролитическим способом. Практически осуществляют гальваиичеекие покрытия не менее чем 10— 15 металлами, в том числе больше всего цинком, никелем, медью, хромом, оловом, кадмием, свинцом, серебром и железом. Менее распространены покрытия платиной, родием, палладием, кобальтом, марганцем , мышьяком, индием, ртутью. Покрытия такими металлами, как галлий, нио бий, вольфрам, молибден и рений, в гальванической практике широкого применения не имеют. За последнее время были о саждены электролитически такие виды металлов, как уран, плутоний, актиний, полоний, цезий, торий, а также германий. Получили значительное практическое применение различные тюирытия сплавами, в том числе сплавами олово-цинк, олово-никель, олово-свинец, никель-кобальт, золото-медь и другими. Почти все применяемые виды покрытий можно разбить по их назначению на следующие группы защитные, защитно-декоративные к специальные покрытия. [c.11]

    Многие /-элементы ГУ-УП групп используются как легирующие добавки для улучшения качества сталей. В состав сталей их обычно вводят в виде ферросплавов (сплавов с железом), например, феррохрома, ферромарганца, ферротитана, феррованадия и др. Легирование ими придает сталям ценные качества, например коррозионную стойкость (хром, марганец, титан), твердость и ударная вязкость (цирконий), твердость и пластичность (титан), прочность, ударная вязкость и износостойкость (ванадий), твердость и износостойкость (вольфрам), твердость и ударная вязкость (марганец), жаропрочность и коррозионную стойкость (молибден, ниобий). Марганец используется как раскислитель стали. Все более широкое применение получают эти металлы и их сплавы, как конструкционные, инструментальные и другие материалы. Так, титан и его сплавы, характеризуемые легкостью, коррозионной устойчивостью и жаропрочностью, применяются в авиастроении, космической технике, судостроении, химической промышленности и медицине. В атомных реакторах используются цирконий (конструкционный материал, отражающий нейтроны), гафний (поглотитель нейтронов), ванадий, ниобий и тантал. Вследствие высокой химической стойкости тантал, ниобий, вольфрам и молибден служат конструкционными материалами аппаратов химической промышленности. Вольфрам, молибден и рений, как тугоплавкие металлы, используются для изготовления катодов электровакуумных приборов и нитей накаливания термопар и в плазмотронах. Вместе с тем при высоких температурах вольфрам и молибден окисляются кислородом, причем образующиеся при высокой температуре оксиды не защищают эти металлы от коррозии, поэтому на воздухе они не жаростойки. Вольфрам служит основой сверхтвердых сплавов. Хромовое покрьггие придает изделиям декоративный вид, повышает твердость и износостойкость. [c.373]

    Получение порошкообразных сплавов. Методом порошковой металлургии изготовляют порошки не только чистых металлов, но и их сплавов. В этом отношении особый интерес представляет электролитическое получение порошкообразных сплавов, содержащих металлы, которые из водных растворов выделены быть не могут. К таким металлам в первую очередь 0Т1ЮСЯТСЯ молибден и вольфрам. Как было описано в предыдущем параграфе, сплавы этих металлов с железом, кобальтом, никелем и марганцем сравнительно легко получаются электролитическим путем. В монографии [171] приведены условия электролитического получения порошкообразных сплавов, содержащих молибден или вольфрам и пригодных для порошковой металлургии. Некоторые из этих сплавов обладают высокой магнипюй восприимчивостью, т. е. являются пермаллоями. [c.77]

    Другие материалы, содержащие хром и никель. Аустенитный чугун, содержащий никель и хром, подобно чугуну, упомянутому в главе III, обладает повышенной стойкостью по отношению к кислотам сравнительно с обыкновенным чугуном, хотя аустенитный чугун все же не так стоек, как аустенитные стали или чугун с высоким содержанием кремния, о котором говорится ниже. Медь является полезной составляющей этого класса сплавов. По данным Бейлли коррозия аустенитного чугуна в 5%-ной серной кислоте составляет Доо коррозии обыкновенного чугуна в тех же условиях. Подробности. можно найти также у Пирса Сплавы на базе никеля и хрома обладают многообещающими свойствами обзор этой группы сплавов дал Хенел . Нихром 80/20, часто употребляющийся как материал с высоким электрическим сопротивлением, во многих случаях коррозии, возможно, менее пригоден, чем тройной сплав, содержащий железо. Удивительно, что сплавы, содержащие железо, иногда не менее коррозионностойки, чем сплавы с малым содержанием железа. По отношению к азотной кислоте сплав, содержащий 80% никеля, 147с хрома и 6% железа, обладает стойкостью того же порядка, как и нержавеющие стали Хромоникель-железные сплавы, употребляющиеся в химической про.мышлен-ности при производстве уксусной кислоты, содержат вольфрам, молибден, кобальт и марганец. Финк и Кенни нашли, что коррозионная стойкость хромоникелевых сплавов то от- [c.477]

    Хром применяется в жаростойких сплавах в количестве 2—357о- Из диаграммы состояния системы железо — хром ясно, что мартенситные стали содержат 2—147о Сг, а ферритные 14—357о Сг. Однако эти границы могут сдвигаться из-за присутствия других элементов. Например, элементы, способствующие устойчивости аустенита (углерод, азот, марганец и никель), расширяют область мартенситных сталей в сторону большего содержания хрома, в то время как кремний, вольфрам, молибден, титан, ниобий и алюминий сужают ее, снижая верхний предел содержания хрома. [c.669]

    Третий метод снижения скорости газовой коррозии — защита поверхности металла специальными жаростойкими покрытиями. В одних случаях поверхность, например стальной детали, покрывают термодиффузионным способом сплавом железо — алюминий или железо — хром. Оба сплава обладают высокими защитными свойствами, а сам процесс называется соответственно алитированием и термохромированием. В других случаях поверхность защищают слоем кермета— смесью металла с окислами. Керамико-металлические покрытия (керметы) интересны тем, что сочетают тугоплавкость, твердость и жаростойкость керамики с пластичностью и проводимостью металла- В качестве неметаллической составляющей используют тугоплавкие окислы АЬОз, MgO и соединения типа карбидов и нитридов. Металлическим компонентом служат металлы труппы железа, а также хром, вольфрам, молибден. [c.52]

    Для жаропрочных сплавов на основе железа, никеля кобальта наиболее перспективны в качестве упрочнителе твердого раствора такие элементы, как молибден, ниоби вольфрам. На рис. 180 показано влияние легирующих эле ментов на жаропрочность твердых растворов на хромонике левой основе типа Х20Н80. Отметим, что положительно влияние алюминия, ниобия и титана связано с образован ем упрочняющих интерметаллидных фаз. [c.300]


Смотреть страницы где упоминается термин Сплавы вольфрама и молибдена с железом: [c.608]    [c.685]    [c.743]    [c.356]    [c.475]    [c.71]    [c.294]   
Смотреть главы в:

Электролитические сплавы -> Сплавы вольфрама и молибдена с железом




ПОИСК





Смотрите так же термины и статьи:

Вольфрам сплавы

Железо сплавы

Молибден вольфрама и железа

Молибден сплавы

Сплавы вольфрама с железом



© 2025 chem21.info Реклама на сайте