Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы окисление кислотой азотно

    Смесь соляной и азотной кислот ( царская водка ) применяют для растворения благородных металлов и их сплавов, сульфидов, окисленных руд, ртути, соединений мышьяка и др. [c.122]

    Моча ЫНз (I), Оа воздуха (П) 1 Вода Окисление неор Азотная кислота ЙЬ° Сплав Pt—Rh (90 10) паровая фаза, 1025— 1115 . Производительность 180 мл/ч на 10 г катализатора [244] ганических веществ Сплав Pt—Rh (95 5) в виде трех последовательных сеток исходная смесь I — 12%, II — 88%. Выход 96% [245] Pt—Rh. Конверсия 86,4% [246] Pt—Rh (95 5) [247] [c.290]


    Из аммиака в промышленности получают не только азотную кислоту и ее соли, но и другие соединения азота, которые являются ценными удобрениями. Окисление аммиака в заводских условиях осуществляется в специальных установках с применением в качестве катализатора сплава платины с 5—10% родия. Катализатор изготовляется обычно в виде тонкой сетки, сквозь которую продувается смесь аммиака с воздухом, содержащая примерно 12 об. долей в % аммиака. При этом имеет место следующая химическая реакция  [c.185]

    Иодометрическое определение меди. Медный сплав растворяют в азотной кислоте для полного окисления меди [c.372]

    Так как для растворения этих сплавов используется концентрированная азотная кислота в смеси с 2 н. серной кислотой или царская водка, указанные элементы переходят в свои высшие степени окисления Мо и Поэтому мы остановимся на свойствах соединений этих элементов в высшей степени окисления. [c.472]

    П а л л а д и й — самый легкий из платиновых металлов, наиболее мягкий и ковкий. В химическом отношении он менее инертен, чем платина и другие платиновые металлы. При нагревании палладий окисляется кислородом Рё + %02 = Рс10. Он растворяется в азотной и горячей концентрированной серной кислотах. С царской водкой палладий реагирует более энергично, чем платина. Характерные особенности палладия — устойчивость в степени окисления +2, способность поглощать водород (до 800 объемов на 1 объем Рс1). При поглощении водорода объем металла заметно увеличивается, он становится более хрупким и ломким. Палладий широко используется как катализатор целого ряда химических реакций (его наносят на фарфор, асбест или другие носители). Сплавы палладия применяются в электротехнике, радиотехнике и автоматике как электроэмиссионные и другие материалы. Так, сплавы палладия с серебром идут для изготовления электрических контактов сплавы палладия с золотом, платиной и родием используются в термопарах и терморегуляторах. [c.299]

    Для изучения циркониевого угла тройной системы цирконий — олово — медь были выбраны четыре лучевых разреза с соотношением олова к меди 4 1,2 1,1 1,1 2. Исходными материалами для приготовления сплавов служили йодидный цирконий чистотой 99,6%, электролитическая медь чистотой 99,99%, переплавленная в вакууме, и олово марки Кальбаум. Сплавы выплавляли в дуговой печи в атмосфере чистого аргона. В качестве геттера применяли йодидный цирконий. Для обеспечения однородности состава проводили 6—8-кратную переплавку с перевертыванием сплавов после каждой плавки. Литые сплавы подвергали гомогенизации при температуре 1350, 1100 или 1000° в зависимости от их состава. Гомогенизированные сплавы проходили закалку с 1350° — 2 час., 1200 -4, 1100— 10, 1000 — 24, 900 — 48, 850 — 168, 800 — 240, 700° — 336 час. Сплавы нагревали а двойных эвакуированных кварцевых ампулах в обычных печах. Для предохранения сплавов от окисления при высоких температурах между ампулами помещали циркониевую стружку. Закалку сплавов производили в воде со льдом. Изучали микроструктуру, твердость и микротвердость литых и закаленных сплавов. Литые и закаленные сплавы травили смесью азотной и плавиковой кислот. Для идентификации различных фаз, встречающихся в циркониевом углу тройной системы цирконий — олово — медь, был применен метод микротвердости. Микротвердость определяли на приборе ПМТ-3. Нагрузка на пирамиду [c.176]


    Реакции (а) — (г) практически необратимы и поэтому направление процесса определяется соотношением скоростей реакций. В отсутствие катализаторов прн высоких температурах (выше 900°С) окисление аммиака идет в основном с образованием азота по реакции (в). Для производства азотной кислоты необходимо наиболее полное окисление аммиака по реакции (а), поэтому применяют катализаторы, избирательно ускоряющие ее. На практике степень окисления аммиака кислородом воздуха до оксида азота, т. е. селективность процесса, достигает 98%. В качестве избирательных катализаторов, ускоряющих процесс окисления аммиака до оксида азота, могут служить платина и ее сплавы с металлами платиновой группы, оксиды железа, марганца, кобальта и др. До [c.100]

    Азотная кислота и ее соли. При описании свойств аммиака в 3 было отмечено, что он горит в кислороде с образованием воды и молекулярного азота. Однако в присутствии специального катализатора окисление аммиака кислородом может протекать с образованием воды и окиси азота. Современные промышленные способы получения азотной кислоты основаны именно па каталитическом окислении аммиака кислородом воздуха. Обычно смесь аммиака с воздухом, нагретую до 1- 700°, пропускают над катализатором (в качестве катализаторов используются сплавы на основе платины)  [c.301]

    Марганец и его соединения. Марганец внешне похож на железо, но тверже его. Это — серебристо-белый металл с плотностью 7200 кг/м и температурой плавления 1260 °С. На воздухе легко окисляется. Оксидная пленка быстро покрывает всю его поверхность и предохраняет от дальнейшего окисления. Еще более платная оксидная пленка образуется при действии на марганец холодной азотной кислоты. С железом марганец образует сплавы в любых количественных соотношениях. [c.476]

    Фотометрический метод, описанный на стр. 40, основан на реакции кобальта с нитрозо-Р-солью. Этот метод применим для определения кобальта в 2г10, 2г30 и в гафнии и используется в тех случаях, когда спектральные методы неприменимы или когда необходим точный анализ. К анализируемому сплаву 2г30, содержащему медь, до растворения пробы добавляют 0,1 г высокочистого титана, а осажденную медь перед окислением раствора азотной кислотой отфильтровывают. [c.133]

    Анализируемый материал нередко переводят в раствор действием азотной кислоты или ее смеси с хлороводородной кислотой. Растворение сопровождается окислением составных частей пробы. Так, при анализе медных сплавов их растворяют в азотной кислоте, причем металлическая медь окисляется до Си +, а азот в азотной кислоте восстанавливается до N0 или N02. [c.371]

    Наиболее часто стали и сплавы кобальта растворяют в соляной или серной кислоте и смеси этих кислот с азотной кислотой. Рекомендуется применять хлорную кислоту в смеси с азотной, в частности, в тех случаях, когда сталь содержит хром или ванадий, и если предполагают кобальт титровать раствором феррицианида калия. Смесь азотной и хлорной кислот окисляет хром и ванадий до высших степеней окисления, чем устраняется их мешающее влияние при титровании кобальта феррицианидом. Высоколегированные стали с высоким содержанием хрома растворяют в разбавленной серной кислоте или [c.185]

    В — при 800—900°С при окислении аммиака до азотной кислоты (каталитические сетки из платинородиевого сплава). [c.213]

    Азотнокислотный гравиметрический метод. Применяют при анализе алюминиевых сплавов с высоким содержанием кремния (силумин), а также чугунов и сталей, содержащих не более 10 % Сг и не содержащих вольфрама, титана, циркония и ниобия. Азотная кислота способствует быстрому окислению навески при растворении образца и разрушению карбидов. [c.335]

    Разложение сплавов титана. Сплавы титана растворяют в разбавленных серной или соляной кислотах с последующим добавлением азотной кислоты (для окисления Ti (III) до Ti (IV). Применяют также смесь фтористоводородной и азотной или серной кислот. Недостатком этого способа является необходимость удаления фтористо- [c.120]

    Одним из лучших растворителей висмута, его сплавов и соединений является азотная кислота. Однако без доступа воздуха НЫОз висмут не растворяет, а на воздухе процесс растворения металла разбавленными растворами кислоты протекает с предварительным его окислением кислородом воздуха до оксида [8]. На стадии растворения металлического висмута в азотной кислоте обычно используют растворы с концентрацией 7—9 моль/л. При этом около 50 % кислоты выделяется в газовую фазу в виде токсичных оксидов азота, которые необходимо улавливать. Из [9] следует, что процесс растворения висмута в азотной кислоте в зависимости от ее концентрации может быть представлен в виде следующих реакций  [c.42]


    Процесс протекает при 1000 °С, такая высокая температура поддерживается за счет тепла этой сильно экзотермической реакции. К исходной смеси, содержащей примерно 12% метана, 11% аммиака и 77% воздуха, добавляют азот (чтобы избежать образования взрывоопасных концентраций) и направляют газовую смесь в контактный аппарат, который напоминает конвертор для окисления аммиака в производстве азотной кислоты. Катализатором являются сетки из платиново-родиевого сплава, расположенные друг над другом. [c.235]

    Несмотря на перечисленные достоинства, применс-Н1 с окислителей связано со следующими недостатками. Обычно предварительная подготовка пробы к анализу состоит в переведении анализируемого материала в раствор посредством обработки различными кислотами чаще всего применяют азотную кислоту или ее смесь с хлороводородной или серной кислотой. Так, медные сплавы растворяют в азотной кислоте, причем содержащиеся в них элементы — железо, олово и другие—превращаются в соединения высших степеней окисления. При анализе различных чугунов и сталей необходимо определять ванадий, молибден, вольфрам, титан и нс-которые другие легирующие элементы, которые вследствие обработки пробы окислительными агентами также содержатся в полученном растворе в высших степенях окисления. Железные руды содержат оксиды железа растворяя их в хлороводородной кислоте с добавками различных окислителей, получают железо в степени окисления +3 и т. д. [c.435]

    Азотная кислота получается преимущественно окислением аммиака в присутствии катализатора из сплава 90% платины и 10% родия в виде 20 слоев сеток (с размером отверстий 0,175 мм), изготовленных из проволоки толщиной 0,076 мм. Эта сетка имеет металлическую поверхность 1,5 м /м . В качестве катализатора используют также гранулированную смесь окиси железа и окиси висмута. В платиновый конвертор, работающий при давлении 7 кгс/см , при суточной производительности 55 т 100%-ной HNOз загружают 2977 г сплава. После зажигания реакция протекает автотермично путем соответствующего предварительного подогрева газовой смеси поддерживается температура 882—910 °С. При этих условиях время реакции составляет примерно 0,0001 сек, тогда как при атмосферном давлении требуется от 0,01 до 0,02 сек. Кислород адсорбируется на поверхности катализатора и реагирует с аммиаком, который диффундирует к поверхности. Скоростью диффузии аммиака определяется общая скорость процесса . [c.326]

    Обычно плавленые металлические к (тализаторы применяют в виде стружек, сеток или проволочных спиралей. Платиновые катализаторы такого типа, как известно, используют для окисления аммиака в азотную кислоту. Что касается производства таких катализаторов, то, очевидно, специальной операцией может быть только составление сплава нужного состава, если, конечно, это необходимо. Однако, кроме того, плавленые катализаторы могут подвергаться и обработке для разрыхления поверхности с целью увеличения их актаввоети. Так, плавленый никелевый катализатор гидрирования активируют либо анодным окислением, либо окислением гипохлорИтом [23]. [c.185]

    Железо, титан, цирконий и многие сплавы на их основе способны пассивироваться в концентрированной азотной кислоте, но при концеитрации кислоты >95% нержавеющие стали иногда склонны к иереиассивации, ирн которой разрушается за-п итпая пленка и окисление сталей ускоряется. Коррозионная активность кислоты возрастает ири наличии в растворе ионов хлора особенно важно иметь это в виду для материалов, пассивирующихся в чистой азотной кислоте. Алюминий рекомендуется для концентраций кислоты <1% и >80%. Титан и цирконий ие рекомендуются для дымящей азотной кислоты, о этом случае возможно образование пирофорных продуктов реакции, чувствительных к удару, т. е. реакция может протекать со взрывом. Медь и свинец нестойки в растворах азотной кислоты, так как в результате нх реакции с кислотой образуются легкорастворимые вещества. Для эксплуатации при нормальной температуре рекомендуется аппаратура из хромистого чугуна. Необходнмо учитывать возможность [c.807]

    В разбавленных соляной и серной кислотах марганец растворяется с образованием солей марганца (И) (МпС1г, Мп304) азотной и концентрированной серной кислотами марганец окисляется (в той или другой степени) с образованием солей, соответствующих высшим степеням окисления. При повышенной температуре марганец вступает в соединение со всеми неметаллами (галогенами, серой, азотом, фосфором, углеродом, кремнием), а с большинством металлов образует сплавы разного состава. В соединениях марганец проявляет степени окисления от 4-2 до +7. На примере этих соединений можно видеть, как влияет изменение степени окисления элемента на свойства окси-ДОВ 1- и ,1 [c.148]

    Из платины изготавливают лабораторную посуду тигли, чашки и др.), термопары (приборы для измере-1ия высоких температур), электроды. Сплав платины родием служит для изготовления сеток, применяемых 1 качестве катализаторов при окислении аммиака в Ксид азота (И) при производстве азотной кислоты. 1плав иридия с платиной используют для изготовления лектрических контактов, [c.499]

    Бедные окисленные медные руды или смешанные окисленносуль-фидные руды трудно подвергаются обогащению и их перерабатывают гидрометаллургическим путем. Технологический процесс состоит из трех операций выщелачивания руды, приготовления электролита и электролиза. Для выщелачивания руды применяют либо метод перколяции, либо кучное выщелачивание, подземное выщелачивание или выщелачивание пульпы в агитаторах. Полученные растворы подвергают очистке обработкой их известняком. При этом железо и алюминий выделяются в виде гидроксидов, которые адсорбируют примеси мышьяка, сурьмы и фосфора. Для удаления примесей азотной кислоты и других часть раствора выводят в отвал, предварительно выделив из него медь цементацией. К чистому раствору Си 04 добавляется Нг504, и электролит направляют на электролиз с нерастворимым анодом, в качестве которого применяют сплавы свинца с серебром или сурьмой. Катодами являются медные листы, полученные в матричных ваннах. Электролизеры работают по каскадной схеме. Питающий раствор содержит 25— 35 кг/м Си, а отходящий 10—15 кг/м . Катодная плотность тока 1150 А/м . Напряжение на ванне 2 В. Расход электроэнергии 2000—3000 кВт-ч/т меди. Этот метод используется в Африке и Южной Америке. В СССР он практически не используется. [c.309]

    При наличии большого числа побочных реакций катализатор, применяемый для окисления аммиака в производстве азотной кислоты, должен быть селективным относительно реакции (1.20). Установлено, что активность к реакции окисления аммнака проявляет подавляющее большинство металлов, их сплавов и соедииений, ио высокий выход оксида азота (П)—более 90% — обеспечивают при температурах 600—1000 °С очеиь немногие из иих, в основном металлы платиновой группы. - [c.41]

    К глубокому окислению относят также превращ. NH, в NO в произ-ве HNO3 катализатор-сетка из сплавов Pt с Rh (см. Азотная кислота). [c.340]

    Светло-голубой с серым оттенком металл семейства платины самый тяжелый из металлов, очень твердый, хрупкий (растирается в порошок), тугоплавкий, высококипящий. Благородный металл не реагирует с водой, разбавленными кислотами, щелочами, гидратом аммиака. На воздухе легко окисляется до максимальной степени окисления (+VIII). Простых катионов в растворе не образует. Реагирует с коииентрированными серной И азотной кислотами, сильными окислителями, галогенами, серой. Поглощает заметное количество Hj. в природе встречается в самородном виде (сплавы с золотом, иридием, платиной). Получение см. 890 , 891 892 893.  [c.448]

    Металлический рений растворяют в азотной кислоте и нейтрализуют раствор аммиаком [108]. Более чистый продукт получается, если рений окислить в токе кислорода. Рений переходит в газовую фазу в составе Re207. Далее Re207 конденсируют и растворяют в растворе аммиака [109]. Способ окисления с возгонкой рения был применен, в частности, для извлечения его из отходов вольфрамо-рениевых сплавов [80, с. 71]. [c.306]

    Сплав нитрата аммония с известняком — известково-аммиачная селитра получила широкое распространение в странах Западной Европы. При длительном внесении в почву аммиачной селитры происходит ее подкисление вследствие физиологической кислотности аммиачных удобрений и протекающих в почве процессов нитрификации — окисления аммиака в азотную кислоту под действие миквоорганизмов почвы 1б8-171 Поэтому аммиачную селитру реко мендуют применять на кислых почвах после их известкования > 2 [c.414]

    В минералах, рудах и концентратах фосфор находится в виде ортофосфатов. Для разложения навесок этих материалов можно применять как окисляющие, так и неокисляющие кислоты. При разложении металлов, сплавов и полупроводниковых соединений, содержащих фосфор в виде фосфидов (РедР, СигР и др.) или твердых растворов, с целью предотвращения образования летучего фосфористого водорода применяют лишь окисляющие кислоты или их смеси азотную, смесь азотной и соляной кислот, соляную кислоту, насыщенную бромом и др. Однако часть фосфора после разложения металла или сплава в окисляющих кислотах находится в виде соединений низших степеней окисления Для полного их окисления до ортофосфорной кислоты в качестве окислителя чаще всего применяют перманганат калия или хлорную кислоту, нагретую до выделения ее паров. Применение в качестве окислителя персульфата аммония приводит к неполному окислению соединений фосфора. Соединения фосфора низших степеней окисления переводят в ортофосфаты также нагреванием при 120—130° С навески анализируемого материала, переведенного в нитраты. [c.26]

    Тантал. Минералы тантала радлагают фтористоводородной кислотой, иногда с добавкой по каплям азотной кислоты, а также серной кислотой с добавлением сульфата калия, натрия или аммония. Окисленные породы сплавляют с 10-кратным количеством буры сначала при низкой температуре, затем при 1000 °С до полной прозрачности сплава (2 ч и более), сплавление проводят также с пиросульфатом калия или едким кали. После сплавления выщелачивание проводят раствором кислоты (H2SO4 или НС1), содержащей комплексообразователь винную кислоту, пероксид водорода или оксалат аммония. [c.20]

    Реакторы с катализатором в тонком слое в виде металлических сит 1 (рис. 209, в) используются для проведения реакцрш, протекающих с большой скоростью. Лимитирующей стадией процесса является в этпх случаях диффузия взаимодействующих газов. В промышленности реакторы с ситчатым слоем катализатора применяют для окисления аммиака, производства азотной кислоты, формальдегида и др. Сита катализаторов для окисления аммиака изготавливаются из платиновой проволоки либо из сплава платины с родием и.1ги па.лладием. [c.252]


Смотреть страницы где упоминается термин Сплавы окисление кислотой азотно: [c.597]    [c.101]    [c.635]    [c.366]    [c.54]    [c.149]    [c.651]    [c.31]    [c.34]    [c.116]    [c.57]    [c.84]    [c.43]    [c.20]    [c.807]    [c.256]    [c.279]   
Методы разложения в аналитической химии (1984) -- [ c.193 ]




ПОИСК







© 2025 chem21.info Реклама на сайте