Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Михаэлиса комплекс субстрата связывание

    Такого рода обсуждение специфичности химотрипсина удобно вести, анализируя именно константу скорости второго порядка ( г/К ). поскольку ее значение не осложнено непродуктивным связыванием субстрата в комплексе Михаэлиса [128]. [c.158]

    В величии К п для гидролиза мальтотриозы входит константа ассоциации только одного способа непродуктивного связывания (I на рис. 10), а именно /Сз,5 (невосстанавливающий конец мальтотриозы связывается с третьим сайтом, но не с четвертым или пятым сайтом). В последних двух случаях связывание мальтотриозы НС будет конкурировать с продуктивным комплексом этого субстрата (/(з.д) и не проявится в константе Михаэлиса. [c.57]


    На самом же деле плохое связывание субстрата с участком D по сравнению с другими участками активного центра лизоцима вовсе не обязательно должно приводить к деформации соответствующего фрагмента субстрата уже в комплексе Михаэлиса, даже если каталитическое превращение данного субстрата происходит с высокой эффективностью. Альтернативным механизмом превращения субстрата в этом случае является изменение конформации сахаридного остатка не в основном состоянии (комплекс Михаэлиса), а в переходном в результате соответствующей перестройки [c.164]

    Конкурентные ингибиторы связываются в том же активном центре, что и субстраты, предотвращая взаимодействие фермента с субстратом уже на стадии связывания. При этом образуются комплексы, аналогичные комплексам Михаэлиса, но не способные к дальнейшим превращениям, или реагирующие очень медленно. В итоге фермент выводится из строя. [c.431]

    Однако легко видеть, что в системе (2.21). при увеличения концентраций хиу субстратов этих реакций скорости V2 и V3 растут неограниченно. Между тем хорошо известно, что при увеличении концентрации субстрата скорость нормального биохимического процесса вначале растет, а затем достигает насыщения. Указанная особенность отражает ферментативную природу биохимических процессов. Насыщение скорости есть следствие связывания всех молекул фермента в фермент-субстратный комплекс, после чего увеличение концентрации субстрата уже не оказывает влияния на скорость реакции. Это и описано в известном уравнении Михаэлиса-Ментен (см. лекцию 3), в котором скорость зависит от субстрата как [c.33]

    Первый из них —ингибирование избытком субстрата. При связывании с ферментом второй молекулы субстрата образуется каталитически неактивный комплекс ЕЗг. Если для простого механизма Михаэлиса — Ментен вторую константу диссоциации обозначить через К , мы получим [c.126]

    В согласии с механизмом (4.40) субстратоподобный ингибитор действительно вытесняет из активного центра несколько молекул воды, как это было обнаружено при рентгеноструктурном анализе кристаллического химотрипсина [123]. Однако этот механизм не согласуется с данными по влиянию среды на гидрофобное фермент-субстратное взаимодействие (см. 4 этой главы). Кроме того, механизм (4.40) противоречит тому, что двойной выигрыш свободной энергии экстракции реализуется лишь в переходном состоянии химической реакции [см. уравнение (4.39)], в то время как в комплексе Михаэлиса вклад гидрофобного фермент-субстратного взаимодействия меньше [см. уравнение (4.29)]. Иными словами, в химотрипсиновом катализе не вся потенциальная свободная энергия сорбции, которую предполагает модель (4.40), равная 2АСэкстр, реализуется в виде прочного связывания субстрата с ферментом. Из диаграммы, представленной на рис. 44, видно, что в комплексе Михаэлиса (или ацилферменте) реализуется в виде свободной энергии связывания E-R лишь инкремент свободной энергии сорбции, отражающий перенос субстрата из воды в неводное окружение (в среду белковой глобулы), равный АО кстр [см. также уравнение (4.29)]. Для объяснения этих фактов следует допустить, что гидрофобное фермент-субстратное взаимодействие идет в две стадии 1) образование фермент-субстратного комплекса протекает по механизму (4.19), который не противоречит данным по солевому эффекту (на их основании он был и предложен), и термодинамические закономерности его согласуются с уравнением (4.29). Этот механизм также предполагает вытеснение нескольких молекул воды из [c.155]


    Сопоставляя па данном этапе рассмотрения концепции Хироми и Тома, мы видим, что отнесение константы Михаэлиса к соответствующим микроскопическим параметрам в рамках обеих концепций идентично (сравните выражения 14 и 15, с одной стороны, и 43 — с другой). Однако смысл каталитической константы в обеих концепциях различается (см. выражения 17 и 44). Если по гипотезе Хироми каталитическая копстапта пропорциональна гидролитическому коэффициенту ко, который является строго характеристическим для данного фермента, и определяется исключительно соотношением констант ассоциации субстрата в продуктивном и непродуктивном фермент-субстратном комплексах (17), то по гипотезе Тома величина гидролитического коэффициента зависит от способа связывания фермента с субстратом и от степени полимеризации последнего. На наш взгляд, это придает настолько больн1ую гибкость расчетам на основании концепции Тома, в особенности с помощью машинного анализа, что может в отдельных случаях делать бессмысленными определения показателей сродства индивидуальных сайтов активного центра. фермента, поскольку все наблюдаемые кинетические эффекты могут быть объяснены в рамках вариации гидролитического коэффициента при изменении структуры олигомерного субстрата и способов его связывания с ферментом. То же можно отнести и к определению константы скорости второго порядка ферментативного расщепления субстрата (см. выражения 18 и 45). [c.65]

    Более внимательное рассмотрение изложенной выше концепции приводит к выводу, что для специфических фермент-субстратных взаимодействий "вовсе не обязательны напряжение или деформация субстрата. Достаточно, чтобы взаимодействие фермента с субстратом было лучнге в переходном состоянии по сравнению с основным состоянием фермент-субстратного комплекса. Этот вопрос детально рассмотрен в первой части книги [81]. Например, если субстрат в ходе его ферментативного превращения и, следовательно, структурной перестройки изменяет свою конформацию так, что прочность его взаимодействия с ферментом в переходном состоянии возрастает, то уменьшается свободная энергия активации и ускоряется реакция. При этом субстрат совершенно не обязательно должен подвергаться какой-либо деформации (т. е. изменению длин ковалентных связей и искажению валентных углов) при образовании комплекса Михаэлиса. Он может связаться с ферментом, помещая свою реакционноспособную связь в непосредственной близости от каталитически активных групп, но так, что прочность связывания при этом еще достаточно далека от потенциально достижимой. Тем самым субстрат как бы резервирует свободную энергию связывания для переходного состояния, что также приводит к ускорению ферментативной реакции. [c.163]

    Помимо того что приведенные данные в принципе не могут служить указанием на существование деформации или напряжения субстрата в комплексе Михаэлиса, они, но мнению Чинмана и сотр. [89], вообще нуждаются в пересмотре. До последнего времени все расчеты по эффективности связывания сахаридных остатков субстратов и их фрагментов (аналогов) с отдельными участками (от А до F) активного центра лизоцима основывались на предположении, выдвинутом ранее Филлипсом [2, 18, 20], что конформация фермента в этих участках, расположение сахаридных звеньев в различных фермент-субстратных комплексах и эффективность взаимодействия сахаридных остатков с участками не изменяются при вариации субстратов. Это предполагаемое свойство системы, получившее название суперпозиции (см. [89]), в свою очередь, означало аддитивность величин свободных энергий взаимодействия сахаридных остатков с соответствующими [c.165]

    Следовательно, формаль1го переход сахаридного остатка у расщепляемой связи от конформации кресла к конформации полукресла в переходном состоянии реакции может привести к ускорению ферментативного превращения в 10 —Ю раз [90]. Несколько позже эти данные и расчеты серьезно пересматривались [89], и было показано, что лактонная концевая группа (153) связывается с участком D активного центра лизоцима лишь в 30 раз более эффективно, чем обычный N-ацетилглюкозаминный остаток. При этом карбонильный атом кислорода лактонной группы образует дополнительную водородную связь с остатком Asp 52 лизоцима и тем самым может вносить дополнительный вклад в связывание с активным центром тем самым достоверность данных о необычно эффективном взаимодействии лактона с лизоцимом становится вообще неопределенной [89]. Однако в любом случае, взаимодействует ли лактон с ферментом прочно или нет, не имеет никакого отношения к напряжению или деформации субстрата в активном центре лизоцима. Даже если лактон и является аналогом цереходного состояния в катализе лизоцимом, опыты по его связыванию с ферментом не могут дать никакого ответа на то, в какой форме — искаженной или обычной (стабильной) — субстрат находится в комплексе Михаэлиса с ферментом. Таким образом, по эффективности связывания лактонов с лизоцимом нельзя судить о деформациях в активном центре. [c.167]

    Другими словами, существуют две концепции, с противоположных (на первый взгляд) позиций объясняющие субстратную специфичность лизоцима (в отношении длины цепи олигосахаридных субстратов). Согласно первой концепции, при переходе от длинных олигосахаридов к коротким непропорционально возрастает константа ассоциации последних с ферментом за счет резкого увеличения степени непродуктивного (геометрически неправильного) связывания. В итоге константы ассоциации длинных и коротких олигосахаридов с ферментом оказываются одинаковыми Кт = = 10" М от тримера до гексамера, см. табл. 38), по эффективность каталитической деградации коротких олигосахаридов мала. Согласно второй концепции, ири переходе от коротких олнгоса-харидов к длинным последние пс реализуют потенциальные воз-можр[ости фермент-субстратных взаимодействий п комплексе Михаэлиса (что и приводит к их относнтельпо малым величинам констант ассоциации с активным центром), но полностью реализуют взаимодействия в переходном состоянии ферментативной реакции. Чем выше степень полимеризации субстрата (в пределах активного центра фермента), тем бoльнJe он резервирует возможностей для уменьшения свободной энергии переходного состояния реакции за счет дополнительных взаимодействий (по сравнению с взаимодействиями в комплексе Михаэлиса) и тем выше скорость ферментативного гидролиза. [c.196]


    Современные представления о механизме ферментативного трансаминировання, разработанные А. Е. Браунштейном и его сотрудниками, являются развитием рассмотренной выше теории (рис. 106). В исходном состоянии альдегидная группа пирндоксаль-фосфата образует альдиминную связь с -аминогруппой остатка Lys-258 активного центра (J). При связывании аминокислоты образуется комплекс Михаэлиса (И), а затем альдимин между пиридо-ксальфосфатом и субстратом (111). В результате последующих [c.204]

    Шульман н сотр. [ИЗ—115] исследовали активный центр карбоксипептидазы А путем измерения релаксации малых молекул, связанных с этим ферментом. Карбоксипептидаза является протео-литическим металлсодержащим ферментом, который катализирует расщепление С-концевой пептидной связи в пептидах и белках. Она имеет молекулярную массу 34600 и содержит 1 атом цинка на молекулу, который обусловливает каталитическую активность, но фермент остается активным при замене 20 + на ионы Мп + или Со2+ [116]. Кристаллическая структура фермента известна [117, 118]. С атомом металла координированы три белковых лиганда, и имеются свободные положения по меньшей мере еще для двух лигандов. Связывание растворителя (НгО) [ИЗ], ингибиторов [114] или фторид-иона [115] на активном центре Мп2+-фермента влияет на релаксацию связанных ядер не только потому, что белок имеет длинное время корреляции, но также вследствие наличия парамагнитного иона металла. Уширение резонансных сигналов растворителя было объяснено тем, что одна молекула воды связывается с ионом Мп2+. Как следует из измерения уширения пиков метильных или метиленовых протонов конкурирующих ингибиторов — индо-лилуксусной, г/7ег-бутилуксусной, бромуксусной и метоюсиуксус-ной кислот — и одновременного определения времен корреляции взаимодействия протонов ингибитора с металлом, релаксация определяется главным образом временем обмена комплекса белок — ингибитор. Используя известные константы Михаэлиса — Ментен и эти данные, можно определить константы скорости всех отдельных стадий реакции фермента с субстратом. [c.393]

    Связывание субстрата и синхронный сдвиг электронов при общем кислотно-основном катализе, приводящем к превращению комплекса Михаэлиса в ацилированную форму фермента, и последующая стадия деацилироваиия могут быть представлены следующей схемой (см. стр. 433). [c.434]

    При действии обоих ингибиторов меняются и максимальная скорость, и константа Михаэлиса, что, вероятно, можно объяснить связыванием с ингибитором и фермента Е), и фермент-субстрат ного комплекса ЕЗ), т. е. наличием смешанного типа ингибиро вания. [c.148]

    Несмотря на кажущуюся сложность реакции, вне зависимости ог числа и природы интермедиатов, принимающих участие в механизме реакции, стационарная кинетика процесса будет описываться уравнением Михаэлиса. Для характеристики ферментативных реакций обычно определяют оба параметра входящие в уравнение Михаэлиса — Ментен максимальную скорость Ут и константу Михаэлиса Кт- Важно отметить, что без детального знания механизма реакции интерпретация йкат и Кт как констант связывания фермента субстратом и константы скорости превращения фермент-субстратного комплекса неправильна, поскольку для разных кинетических схем константы ккат и Кт могут отражать совершенно различные процессы (ом. табл. 1), тем не менее эти характеристики легко определяются экспериментально и в ряде случаев несут весьма важную информацию о свойствах каталитической реакции. [c.14]

    Механизм триптического гидролиза, согласно предложенной схеме, включает последовательную цепочку химических стадий взаимодействия фермента и субстрата, протекающих через ковалентные промежуточные состояния. Каталитический процесс начинается с образования невалентного комплекса Михаэлиса (П), в котором гидроксил Ser-195 и имидазольное кольцо His-57 фермента оказываются сближенными соответственно с карбонильной и амидной группами расщепляемой пептидной или сложноэфирной связи субстрата. В результате их согласованных взаимодействий невалентное фермент-субстратное связывание переходит в ковалентное с образованием сначала малоустойчивого промежуточного соединения так называемого тетраэдрического аддукта (III). Последний распадается на ацилфермент и амин (IV), а при гидролизе сложного эфира на ацилфермент и спирт. Далее следует деацилирование, которое проходит в принципе аналогичным образом, но в обратном порядке и с участием в качестве нуклеофильного агента не атома О боковой цепи Ser-195, а молекулы воды. Вновь образуется метастабильный тетраэдрический аддукт (V), [c.150]

    В случае механизма Бриггса — Холдейна, для которого 2 -1, отношение кса /Км равно к] — константе скорости связывания фермента и субстрата. В гл. 4 будет показано, что константы скорости связывания должны быть порядка 108 М . с-. Это позволяет сделать вывод, что для механизма Бриггса — Холдейна отношение кса. /Км равно 10 — 10 М С-. Каталаза, ацетилхолинэстераза, карбоангидраза, кротоназа, фумараза и триозофосфатизомераза — все эти ферменты по указанному критерию подчиняются кинетике Бриггса— Холдейна, о чем свидетельствуют данные табл. 4.4. Еше одним ферментом такого типа является пероксидаза, выделенная из хрена,— один из первых ферментов, к которому были применены методы исследования быстрых реакций [3]. Сначала пероксидаза образует с перекисью водорода компекс Михаэлиса, который затем взаимодействует с донором водорода (реакция второго порядка). При достаточно высоких концентрациях донора скорость второй реакции значительно превышает скорость диссоциации комплекса Михаэлиса. [c.114]


Смотреть страницы где упоминается термин Михаэлиса комплекс субстрата связывание: [c.532]    [c.164]    [c.168]    [c.130]    [c.366]    [c.319]    [c.21]    [c.221]    [c.40]    [c.342]   
Принципы структурной организации белков (1982) -- [ c.246 ]

Принципы структурной организации белков (1982) -- [ c.246 ]




ПОИСК





Смотрите так же термины и статьи:

Михаэлис

Связывание

Субстрат



© 2024 chem21.info Реклама на сайте