Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фермент-субстратные комплексы энергия связывания

    Индуцированное соответствие обеспечивает контроль и специфичность ферментативной реакции, однако оно не включает непосредственного использования связывающих сил для уменьшения активационного барьера реакции. Равновесия и соответствующие свободные энергии этого механизма представлены схемой (3), в которой Е — неактивная форма свободного фермента Е З — модифицированный активный фермент, связанный с субстратом. Поскольку Е — энергетически предпочтительная форма свободного фермента (свободный фермент каталитически неактивен) и Е З — каталитически активная форма фермент-субстратного комплекса, силы связывания фермента и субстрата должны являться движущей силой энергетически неблагоприятного превращения Е в Е. Наблюдаемая энергия связывания субстрата (с образованием Е З) должна уменьшиться на эквивалентную величину. [c.229]


    Такие деформации, безусловно, могут иметь место в силу взаимодействия между субстратом и трехмерной структурой белка и, поскольку последний не является жестким образованием, его структура также будет деформироваться. Деформации стабильных структур основного состояния приводят к тому, что такого рода взаимодействия осуществляются с затратой энергии и понижают общую энергию связывания. Поэтому деформации возможны только в случае значительного положительного связывания с другими частями молекулы субстрата (что, по-видимому, позволяет исключить этот механизм в случае очень маленьких молекул). Все это означает, что общая энергия связывания понижается однако пока она остается достаточно высокой для эффективного связывания, т, е. полного формирования фермент-субстратного комплекса при физиологических концентрациях субстрата, эффективность катализа не уменьшается. [c.528]

    Ферменты помогают субстратам принять переходное состояние за счет энергии связывания при образовании фермент-субстратного комплекса. Снижение энергии активации при ферментативном катализе обусловлено увеличением числа стадий химического процесса. Индуцирование ряда промежуточных реакций приводит к тому, что исходный активационный барьер дробится на несколько более низких барьеров, преодолеть которые реагирующие молекулы могут гораздо быстрее, чем основной. [c.68]

    Эти аргументы можно обобщить следующим образом единственная структура активного центра обычно не может обеспечить оптимальное соответствие как для субстратов, так и для продуктов реакции. Различия в структуре реагирующих веществ и продуктов реакции и сопротивление активного центра изменениям будут приводить к тому, что энергия связывания субстратов вызовет появление напрян<ения в продуктах реакции, и наоборот. Наиболее желательная ситуация, с точки зрения возможности ускорения реакции фермент-субстратного комплекса, возникает в том случае, если активный центр структурно имеет наибольшее сродство к переходному состоянию. Индуцирование напряжения в фермент-субстратном комплексе включает преодоление части энергетического и энтропийного барьеров реакции за счет перенесения субстрата час ично вдоль координаты реакции к переходному состоянию и, таким образом, ведет к уменьшению наблюдаемой свободной энергии активации (рис. 2)  [c.226]

    Образование фермент-субстратных комплексов позволяет объяснить также снижение энергии активации превращения субстрата (см. табл. 9.4). Связывание в комплекс приводит к перераспределению электронов в молекуле субстрата. Это, в свою очередь, уменьшает прочность разрываемых связей и, соответственно, энергию активации. [c.421]


    Понижение энтропийной части происходит в результате фиксации субстрата на ферменте в конфигурации активных групп, обладающей и более низкой энтропией по сравнению со свободным сочетанием реагентов. Следовательно, в таком комплексе, исходно близком к переходному состоянию, уменьшение энтропии при образовании самого переходного состояния не должно быть уже столь большим по абсолютной величине, как в случае свободных реагентов. Значит, роль энтропийного фактора (е / <С 1) в (XIV.1.1), (XIV.1.2), снижающего скорость реакции, уменьшается в ферментативном процессе по сравнению с обычной реакцией. Избыток энергии, выделяющейся при связывании субстрата, должен хотя бы частично переходить в теплоту, чтобы скомпенсировать уменьшение энтропии при образовании комплекса. С энергетической точки зрения, происходящая стабилизация и уменьшение собственной энергии комплекса должны были бы замедлять катализ, где требуется преодоление активационного барьера. Однако в схемах энергетического катализа предполагают, что осуществляется не только фиксация конфигурации субстрата, но и создание напряжения фермент-субстратного комплекса, способствующего реакции. При этом происходит и снижение энергии активации химической реакции за счет концентрации энергии напряжения на атакуемой связи. [c.420]

    Проблема снижения энергетического барьера. С термодинамической точки зрения, конформационной энергии связывания может быть достаточно для деформации субстрата, однако, чтобы использовать эту энергию в разрыве сильных ковалентных связей в субстрате, необходимо, в свою очередь, образование других сильных связей. Возникает вопрос какова природа предполагаемых напряженных конформационных состояний, которые должны вызывать столь существенные изменения энергии напряжения, и каковы вообще непосредственные доказательства их существования в фермент-субстратном комплексе Именно в решении этого вопроса физико-химическое описание катализа встречается с серьезными трудностями. [c.422]

    Важной особенностью ферментативного катализа является то, что фермент связывает субстрат и реакция протекает в пределах фермент-субстратного комплекса. Чтобы глубже понять причины, обусловливающие прочность и специфичность этого связывания, мы рассмотрим взаимодействие между несвязанными атомами, применив эмпирический и феноменологический подход. В частности, мы уделим большое внимание значению энергии взаимодействия. Нековалентные взаимодействия важны не только потому, что они ответственны за связывание. Как мы увидим ниже (гл. 10), вместо того чтобы давать непосредственный вклад в энергию связывания, эти взаимодействия понижают энергию активации стадии химического превращения субстрата, а кроме того играют важную роль в поддержании структуры белка. [c.272]

    В этом случае полная энергия связывания AGь реализуется в переходном состоянии. Исходному фермент-субстратному комплексу соответствует положительный член AGR, который увеличивает /См, а прирост энергии связывания по мере приближе- [c.296]

    Эти ферменты уже рассматривались нами в разных разделах. Основной материал распределился следующим образом классификация ферментов, их специфичность — гл. 1, разд. В структура активного центра, фермент-субстратный комплекс, ацилфермент и комплекс между ферментом и продуктом — гл. 1, разд. Г кинетика-реакций и установление их механизма — гл. 7, разд. Б рН-зависимость каталитического процесса и состояние ионизации активного центра — гл. 5, разд. Е и Ж.2.а использование энергии связывания для увеличения йса — гл. 10, разд. А.4 стабилизация переходного состояния, специфическая сольватация переходного состояния — гл. 10, разд. В.5.в. В этом разделе вкратце рассмотрены все перечисленные вопросы. [c.362]

    Обычно наиболее быстро протекает первая стадия реакции. Первичный комплекс с субстратом образуется за счет слабых типов связи и при сравнительно низкой энергии активации. Сте-рическое связывание субстратных молекул с ферментом еще недостаточно для высокой эффективности ферментативного катализа. [c.139]

    В согласии с механизмом (4.40) субстратоподобный ингибитор действительно вытесняет из активного центра несколько молекул воды, как это было обнаружено при рентгеноструктурном анализе кристаллического химотрипсина [123]. Однако этот механизм не согласуется с данными по влиянию среды на гидрофобное фермент-субстратное взаимодействие (см. 4 этой главы). Кроме того, механизм (4.40) противоречит тому, что двойной выигрыш свободной энергии экстракции реализуется лишь в переходном состоянии химической реакции [см. уравнение (4.39)], в то время как в комплексе Михаэлиса вклад гидрофобного фермент-субстратного взаимодействия меньше [см. уравнение (4.29)]. Иными словами, в химотрипсиновом катализе не вся потенциальная свободная энергия сорбции, которую предполагает модель (4.40), равная 2АСэкстр, реализуется в виде прочного связывания субстрата с ферментом. Из диаграммы, представленной на рис. 44, видно, что в комплексе Михаэлиса (или ацилферменте) реализуется в виде свободной энергии связывания E-R лишь инкремент свободной энергии сорбции, отражающий перенос субстрата из воды в неводное окружение (в среду белковой глобулы), равный АО кстр [см. также уравнение (4.29)]. Для объяснения этих фактов следует допустить, что гидрофобное фермент-субстратное взаимодействие идет в две стадии 1) образование фермент-субстратного комплекса протекает по механизму (4.19), который не противоречит данным по солевому эффекту (на их основании он был и предложен), и термодинамические закономерности его согласуются с уравнением (4.29). Этот механизм также предполагает вытеснение нескольких молекул воды из [c.155]


    Превращение основного состояния фермепт-субстратного комплекса в переходное ведет к увеличению прочности связывания фермента с субстратом (точнее, измененных или активированных фермента и субстрата) и к уменьшению активационного барьера реакции. При этом в согласии с основными положениями теории переходного состояния уменьшение свободной энергии активации соответствующей стадии ферментативной реакции определяется разницей свободных энергий реального и гипотетического фер-мент-субстратного комплекса. Иначе говоря, во сколько раз напряжения ухудшают возможное связывание субстрата с активным центром, во столько же раз возрастает скорость соответствующей стадии ферментативной реакции ири условии снятия этих напряжений в переходном состоянии на данной стадии [79—82]. Следовательно, если напряжения или деформации, существующие в фермент-субстратиом комплексе, снимаются в переходном состоянии реакции, то они выгодны для фермента на стадии каталитического превращения комплекса. Чем более выражены такие наиряжения в фермент-субстратном комплексе, тем выше каталитическая копстапта ферментативной реакции. Согласно классификации фермеит-субстратных взаимодействий именно те взаимодействия, прочность которых возрастает прн образовании переходного состояния ферментативной реакции, называются специфическими [81, 82]. [c.163]

    Более внимательное рассмотрение изложенной выше концепции приводит к выводу, что для специфических фермент-субстратных взаимодействий "вовсе не обязательны напряжение или деформация субстрата. Достаточно, чтобы взаимодействие фермента с субстратом было лучнге в переходном состоянии по сравнению с основным состоянием фермент-субстратного комплекса. Этот вопрос детально рассмотрен в первой части книги [81]. Например, если субстрат в ходе его ферментативного превращения и, следовательно, структурной перестройки изменяет свою конформацию так, что прочность его взаимодействия с ферментом в переходном состоянии возрастает, то уменьшается свободная энергия активации и ускоряется реакция. При этом субстрат совершенно не обязательно должен подвергаться какой-либо деформации (т. е. изменению длин ковалентных связей и искажению валентных углов) при образовании комплекса Михаэлиса. Он может связаться с ферментом, помещая свою реакционноспособную связь в непосредственной близости от каталитически активных групп, но так, что прочность связывания при этом еще достаточно далека от потенциально достижимой. Тем самым субстрат как бы резервирует свободную энергию связывания для переходного состояния, что также приводит к ускорению ферментативной реакции. [c.163]

    Помимо того что приведенные данные в принципе не могут служить указанием на существование деформации или напряжения субстрата в комплексе Михаэлиса, они, но мнению Чинмана и сотр. [89], вообще нуждаются в пересмотре. До последнего времени все расчеты по эффективности связывания сахаридных остатков субстратов и их фрагментов (аналогов) с отдельными участками (от А до F) активного центра лизоцима основывались на предположении, выдвинутом ранее Филлипсом [2, 18, 20], что конформация фермента в этих участках, расположение сахаридных звеньев в различных фермент-субстратных комплексах и эффективность взаимодействия сахаридных остатков с участками не изменяются при вариации субстратов. Это предполагаемое свойство системы, получившее название суперпозиции (см. [89]), в свою очередь, означало аддитивность величин свободных энергий взаимодействия сахаридных остатков с соответствующими [c.165]

    Непродуктивное связывание предотвращает гидролиз пептидов, состоящих из нежелательных о-аминокислот. Пептиды, состоящие из D-аминокислот, также могут прочно связываться химотрипсином. Однако в этом случае образуется сравнительно малореакционноспо-собный фермент-субстратный комплекс, поскольку расщепляющаяся связь не ориентирована должным образом относительно каталитического центра [629] таким путем свободная энергия связывания расходуется на ингибирование реакции с аналогом субстрата, которая могла бы привести к нежелательным продуктам. Непродуктивное связывание, по-видимому, является общим механизмом, обеспечивающим специфичность фермента [630, 631]. [c.248]

    Большое значение для эффектианости действия фермента может иметь сопряженный кислотно-осноаный катализ, а также нуклео-фильный катализ с образованием реакционноспособного промежуточного соединения- Немалую роль играет и фактор микросреды. Совокупность факторов, вносящих вклад а повышение каталитической активности ферментов, обеспечивает снижение энергетического барьера реакции. Согласно получившей весьма широкое признание концепции, снижение энергетического барьера достигается благодаря стабилизации переходного состояния или, точнее, благодаря приближению структуры субстрата а фермент-субстратном комплексе к структуре переходного состояния. Приближение к структуре переходного состояния требует в общем случае затраты энергии согласно рассматриваемой концепции, необходимая энергия обеспечивается за счет части энергии связывания субстрата с ферментом. [c.188]

    Гипотеза, сформулированная Полингом [241 ], о природе переходного состояния фермент-субстратных комплексов утверждает, что функция ферментов определяется их способностью к более прочному связыванию форм переходного состояния, чем молекулы субстрата, и что это свойство обусловливает понижение свободной энергии активации реакции. На основании структурных исследований Липскомба и сотр. [29, 188, 189], свидетельствующих о координации карбонильного кислорода субстрата катионом металла, можно предполагать, что такой же способ координации существует в переходных фермент-субстратных коплексах металлсодержащих аналогов КПА. Следовательно, прочность связи металл— кислород, образующейся при присоединении субстрата, может давать существенный вклад в стабилизацию переходного фермент- [c.96]

    Здесь стоит, пожалуй, несколько уклониться в сторону и рассмотреть вопрос о том, почему у растений не выработались РуДФ-карбоксилазы, более эффективно связывающие субстрат (СОг). На этот счет мы можем только строить гипотезы, опираясь на некоторые факты. Сам по себе субстрат обладает рядом особенностей, по-видимому, не слишком благоприятных для его эффективного связывания. Во-первых, его молекула мала и не обладает развитой стереохимической структурой поэтому у нее очень мало групп, способных взаимодействовать с поверхностью фермента. Во-вторых, она лишена электрического заряда. А поскольку при фермеит-субстратных взаимодействиях заряд играет обычно важную роль, фермент опять-таки ограничен в своих возможностях притянуть к себе молекулу СОг и удерживать ее у своей поверхности. Действительно, в других реакциях карбоксилирования (например,в реакциях пируваткарбоксилазы или ацетил-КоА — карбоксилазы) каталитически активным и предпочитаемым субстратом служит не СОг, а НСОГ по-видимому, заряд молекулы является необходимым добавочным источником энергии для стабилизации фермент-субстратного комплекса. [c.105]

    Таким образом, увеличение длины углеводородной цепи, которое мало сказывается на химической реакционной способности эфиров и должно было бы приводить только к более прочному связыванию, обусловливает увеличение скорости атаки ацильной группы в ферментативной реакции. В терминах теории напряжения [19] это указывает на то, что энергия взаимодействия углеводородной цепи с белком используется для индуцирования напряжения в фермент-субстратном комплексе, как это схематически показано на рис. 6. Предположим, что субстрату с короткой цепью соответствует определенная энергия связывания АР а- Более длинный субстрат должен иметь дополнительную энергию связывания А в за счет гидрофобного взаимодействия углеводородной цепи. Если эта энергия используется для индуцирования напряжения А/ Вд и уменьшения свободной энергии активации, то па такую же величину уменьшится вклад в константу связывания  [c.234]

    Общая схема ферментативной реакции, включает, как мы знаем, образование единого фермент-субстратного комплекса, в активном центре которого и происходит разрыв старых и образование новых связей с появлением продукта. В различных теоретических моделях механизма действия ферментов предлагаются разные способы понижения барьера реакции в фермент-субстратном комплексе. В результате фиксации субстрата на ферменте происходит некоторое снижение энтропии реагентов по сравнению с их свободным состоянием. Само по себе это облегчает дальнейплие химические взаимодействия между активными группами в фермент-субстратном комплексе, которые должны быть взаимно строго ориентированы. Предполагается также, что избыток энергии сорбции, который выделяется при связывании субстрата, не переходит полностью в тепло. Энергия сорбции может быть частично запасена в белковой части фермента, затем сконцентрироваться на атакуемой связи в области образовавплихся фермент-субстратных контактов. Таким образом, постулируется, что энергия сорбции идет на создание низкоэнтропийной энергетически напряженной конформации в фермент-субстратном комплексе и тем самым способствует ускорению реакции. Однако экспериментальные попытки обнаружить упругие деформации, которые могли бы храниться в белковой глобуле фермента, не диссипируя в тепло в течение достаточно длительного времени между каталитическими актами (10 - 10" с), не увенчались успехом. Более того, нужная для катализа взаимная ориентация и сближение расщепляемой связи субстрата и активных [c.126]

    Хочачка и сотр. (Ho ha hka et al., 1972) изучали ферменты, выделенные из рыб, обитающих на средней и большой глубине оии хотели определить природу адаптивных изменений в структуре ферментов, в результате йоторых эти катализаторы приобретают способность функционировать при давлениях, существующих на больших глубинах. Исследователи пришли к заключению, что адаптация ферментов к высоким давлениям обусловлена высокой степенью сродства ферментов к субстратам, кофакторам и модуляторам, а ие величиной или энергией активации . Следует отметить, что величина которая имеется здесь в виду, представляет собой изменение объема конкретно для активации фермент-субстратного комплекса, а совсем не обязательно является в уравнении (2). По мнению Хочачки и сотр., в природных условиях, где концентрация субстратов может быть низкой, стадия связывания субстратов имеет первостепенную важность так же, впрочем, как стадия связывания кофакторов и модулирующих лигандов. [c.143]

    Допустим, что максимальная внутренняя свободная энергия связывания равна АОь. В рассматриваемом случае она реализуется в исходном фермент-субстратном комплексе, обеспечивая прочное связывание Кк — константа диссоциации фермент-субстратного комплекса — будет мала. Образование переходного состояния, сопровождающееся изменением геометрии субстрата и ухудшением соответствия, приведет к уменьшению энергии связывания и, следовательно, к уменьшению k it Если увели- [c.295]

    Как было показано в гл. 8, теория индуцированного соответствия хорошо объясняет некоторые явления, наблюдаемые в случае аллостерических ферментов. Эта теория была предложена ранее для объяснения субстратной специфичности для простых (неаллостерических) ферментов. Предполагается, что в отсутствие субстрата фермент структурно не комплементарен переходному состоянию. Однако, поскольку молекула фермента довольно гибкая, а субстрат имеет жесткую структуру, при образовании фермент-субстратного комплекса каталитические группы на ферменте ориентируются оптимальным для катализа образом это означает, что фермент становится комплементарным переходному состоянию только после связывания субстрата. В классическом варианте концепции деформации считается, что /См возрастает за счет той составляющей энергии связывания, которая отвечает за деформацию субстрата, а в теории индуцированного соответствия — за счет той составляющей энергии связывания, которая отвечает за деформацию фермента. [c.312]

    Хотя в некоторых случаях напряжение представляет собой истинную деформацию субстрата, зачастую оно вообще не сопровождается искажением структуры последнего. Такая ситуация возникает либо в том случае, когда между субстратом и ферментом имеются неблагоприятные взаимодействия, устраняющиеся в переходном состоянии, либо когда при образовании переходного состояния возникает дополнительное взаимодействие, не реализующееся в фермент-субстратном комплексе. В обоих случаях существуют силы, изменяющие структуру субстрата, с тем чтобы приблизить ее к структуре переходного состояния. Поскольку нековалентные взаимодействия довольно слабые (за исключением вандерваальсовых сил отталкивания), а ферменты и субстраты — достаточно гибкие молекулы, трудно ожидать, что взаимодействие фермента с субстратом приведет к деформации последнего. Может иметь место лишь поворот групп субстрата относительно простых связей (как, например, при конформационных изменениях субстратов лизоцима), растяжение же этих связей или их деформация вряд ли возможны, поскольку это требует больших энергетических затрат. Энергии связывания вполне достаточно для деформации субстрата, однако для использования этой энергии необходимо, чтобы ее значение существенно изменялось на очень коротком расстоянии, т. е. чтобы образовалась сильная связь. На основании энергетических расчетов Левитт пришел к следующему выводу Небольшие изменения конформации субстрата, приводящие к существенным изменениям энергии напряжения, не могут быть вызваны связыванием с ферментом [8, 36]. Кроме того, он предположил, что самые большие по величине силы, которые принимают участие в деформации субстрата, не превышают 12 кДж-(моль-А)- [3 ккал-(моль-А)- ], что приводит к смещению атомов на 1 А. Деформация может иметь место лишь в предельных случаях, и обычно напряжение определяется тонко [c.323]

    Другими словами, существуют две концепции, с противоположных (на первый взгляд) позиций объясняющие субстратную специфичность лизоцима (в отношении длины цепи олигосахаридных субстратов). Согласно первой концепции, при переходе от длинных олигосахаридов к коротким непропорционально возрастает константа ассоциации последних с ферментом за счет резкого увеличения степени непродуктивного (геометрически неправильного) связывания. В итоге константы ассоциации длинных и коротких олигосахаридов с ферментом оказываются одинаковыми Кт = = 10" М от тримера до гексамера, см. табл. 38), по эффективность каталитической деградации коротких олигосахаридов мала. Согласно второй концепции, ири переходе от коротких олнгоса-харидов к длинным последние пс реализуют потенциальные воз-можр[ости фермент-субстратных взаимодействий п комплексе Михаэлиса (что и приводит к их относнтельпо малым величинам констант ассоциации с активным центром), но полностью реализуют взаимодействия в переходном состоянии ферментативной реакции. Чем выше степень полимеризации субстрата (в пределах активного центра фермента), тем бoльнJe он резервирует возможностей для уменьшения свободной энергии переходного состояния реакции за счет дополнительных взаимодействий (по сравнению с взаимодействиями в комплексе Михаэлиса) и тем выше скорость ферментативного гидролиза. [c.196]

    Химические факторы, определяющие скорость и направление реакций органических фосфатов, связаны главным образом с расположением гидроксильной или фосфатной группы (или других функциональных групп) субстрата относительно реагирующей части органического фосфата, присутствием или отсутствием основных катализаторов и распределением заряда в ангидриде или эфире. Химически распределение зарядов может быть изменено рядом способов, таких, как подавление диссоциации фосфатных групп при образовании эфира или проведение реакции в кислой среде (например, катализируемые протонами взаимопревращения нуклеозид-2 - и нуклеозид-З -фосфатов и нуклеозид-2 - и нуклеозид-3 -алкилфосфатов, которое не наблюдается в щелочной среде) и образование смешанных ангидридов из кислот, сила которых несоизмерима с силой фосфорной кислоты. Для неферментативных химических реакций также наблюдались каталитические и направляющие эффекты, возникающие в результате образования комплексов с ионами некоторых поливалентных металлов. В биохимических реакциях аналогичный контроль может осуществляться с полющью таких факторов, как конформация нуклеозид-5 -полифосфатов, связывание субстрата и фермента через металл, связывание диссоциирующих групп фермента с группой Р = О водородными связями, что эквивалентно протонированию. (С точки зрения резонансных форм фосфатов, разница между группами Р = О и Р — носит чистоформальный характер.) Образование катнон-субстратных комплексов, таких, как комплекс АТФ с магнием, по-видимому, увеличивает электрофильный характер атомов фосфора (препятствуя ионизации) и почти наверняка приводит к такому смещению электронной плотности, которое облегчает атаку данного атома фосфора, зависящую от определенной стереохимической конфигурации комплекса. В фермент-металл-субстратных комплексах, в которых металл служит ю тикoм между ферментом и субстратом, свободная энергия активации, по-видимому, значительно снижена. [c.350]

    Константа диссоциации комплекса глицилтирозина с КПА при 25 °С равна 1-10-з М (табл. 15.4). Соответствующая ей величина АС составляет —4,1 ккал/моль, что меньше суммы вкладов всех наблюдаемых взаимодействий [57, 58]. Часть энергии связывания предположительно используется для перевода субстрата и (или) фермента в напряженные, т. е. энергетически невыгодные конформации [59—62] (разд. 3.5.1). Таким образом, благоприятные фер-мент-субстратные взаимодействия служат источником энергии для [c.521]

    Структура лизоцима из белка куриных яиц, содержащего 129 остатков, схематически изображена на рис, 9.11. Исследование структуры комплексов фермента с моно-, дп- и трисахарпдами показало, что связывание сахаров происходит в щели , находящейся между двумя половинамп молекулы. Три-Ы-ацетилхнтотриоза располагается при этом таким образом, что ее невосстанавливающий конец (сахар А) оказывается у начала щели, а восстанавливающий конец (сахар С) — в центральной ее части. Установлено, что прн связывании субстрата пропс.ходпт небольшое перемещение ( 0,75 А) некоторых боковых групп внутри щели это указывает на осуществление взаимодействия по типу вынужденного контакта . На модели фермента внутри щели были размещены еще три остатка сахара, причем каждый последующий сахар присоединялся таким образом, чтобы его конформация была (насколько это возможно) такой же, как у первых трех остатков. Все остатки сахара (за исключением одного из шести) реализуют эффективные нековалентные взаимодействия с R-группами и пептидными группами (рис. 9.11) образуется много водородных связей и осуществляются неполярные контакты. Поскольку гидролиз происходит между четвертым и пятым остатками сахаров (D и Е), особенно важно проанализировать окружение расщепляемой гликозидной связи. По одну сторону от связи на расстоянии - 3 А (от атома О) находится карбоксильная группа Glu-35, а по другую — расположена карбоксильная группа Asp-52. Поскольку Glu-35 находится в гидрофобном окружении, ее карбоксильная группа, вероятно, протонирована Asp-52 участвует в образовании сложной сети водородных связей между гидрофильными группами, и ее карбоксильная группа, по-видимому, ионизирована. Поскольку эти карбоксильные группы являются ближайшими к атакуемой гликозидной связи, предполагается, что они участвуют в каталитическом процессе. Далее, если сахарный остаток D поместить в субстратной щели, сохраняя для него нормальную конформацию кресла, в которой, как предполагается, находятся все остальные остатки сахаров, то этот остаток должен был бы оказаться в слишком тесном контакте с группами, расположенными в щели. Если, однако, допустить, что этот остаток находится в напряженной конформации полукресла, то оказывается, что расстояния до соседних групп соответствуют нормальным, которые необходимы для контактов. Поэтому полагают, что при связывании субстрата остаток D находится в напряженном состоянии при этом энергия, необходимая для поддержания остатка в невыгодной конформации полукресла, более чем компенсируется энергией связывания других остатков сахаров. [c.314]


Смотреть страницы где упоминается термин Фермент-субстратные комплексы энергия связывания: [c.164]    [c.533]    [c.221]    [c.40]    [c.65]    [c.236]    [c.371]   
Структура и механизм действия ферментов (1980) -- [ c.28 , c.272 , c.281 , c.289 ]




ПОИСК





Смотрите так же термины и статьи:

Связывание

Энергия комплекса



© 2025 chem21.info Реклама на сайте