Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свободная энергия сорбции

    Свободная энергия сорбции субстрата на ферменте как источник ускорения реакции  [c.34]

Рис. 17. Механизмы, которые могут объяснить постоянство суммарной свободной энергии сорбции при одновременном понижении свободной энергии активации химического превращения фермент-субстратного комплекса i — эффекты сближения и ориентации II — механизм индуцированного соответствия III — механизм напряжения Рис. 17. Механизмы, которые могут объяснить постоянство <a href="/info/671482">суммарной свободной энергии</a> сорбции при одновременном понижении <a href="/info/9372">свободной энергии активации</a> <a href="/info/9468">химического превращения</a> <a href="/info/187584">фермент-субстратного комплекса</a> i — <a href="/info/100176">эффекты сближения</a> и ориентации II — механизм индуцированного соответствия III — механизм напряжения

    Не менее важную роль в комплексообразовании играет также и повышенная микровязкость в поверхностном слое (см. раздел Микросреда активного центра этой главы). Повышенная микровязкость обусловлена тем, что подвижность полипептидных цепей в известной степени заторможена. Если бы это было не так, то энтропийные потери при образовании сложного комплекса фермент — органический лиганд могли бы стать столь большими, что образование его было бы неэффективным (см. раздел Оценка свободной энергии сорбции этой главы). [c.24]

    Б строгом термодинамическом смысле дифференциальная мольная свободная энергия сорбции Р отражает способность сорбента к различным межмолекулярным взаимодействиям с анализируемым веществом. Однако, исходя из величину , трудно оценить селективность сорбента, т.е. различие в способности анализируемых веществ к взаимодействию с данным сорбентом. Это различие определяется разностью свободных энергий сорбции В Сл С ). величину (л С) можно рассчитать из уравнения (2), которое получается после преобразования уравнения (I)  [c.142]

    Прочность комплексов фермент — лиганд (оценка свободной энергии сорбции] [c.24]

    Однако структурных предпосылок (налагающих требования к геометрии активного центра) недостаточно для катализа. Термодинамически невыгодному процессу сближения и ориентации прежде всего нужна движущая сила, благодаря которой суммарный процесс пошел бы спонтанно. В ферментативном катализе роль такой движущей силы играет свободная энергия сорбции субстрата на ферменте.  [c.56]

    Как уже указывалось, в работе [10] излагаются результаты по расчету активности окисного никелевого катализатора в реакции разложения перекиси водорода. Авторы применили метод титрования окиси никеля водными растворами гидразингидрата или иодида калия при заданных pH, которые имеют разный окислительно-восстановительный потенциал, для анализа функции распределения активных центров катализатора по свободной энергии адсорбции поверхностно-связанного кислорода. Была установлена близкая к линейной зависимость активности катализатора от числа центров со свободной энергией сорбции кислорода в интервале от —46,5 до —53,5 кДж/моль. [c.96]

    Иными словами, термодинамическая предпосылка механизма сближения и ориентации реагирующих групп X и Y в комплексе XE-RY состоит в том, что замораживание молекулы субстрата (или также некоторых каталитических фрагментов активного центра) идет за счет свободной энергии сорбции E-R. Чтобы показать это, учтем, что образование фермент-субстратного комплекса можно представить в виде модели (см. 6 гл. I), в которой на первом этапе происходит остановка поступательного движения субстрата с одновременным замораживанием вращательных и некоторых других степеней свободы. Лишь после этого в собственном акте сорбции может реализоваться выигрыш свободной энергии гидрофобного и других видов взаимодействий (если они существуют), которую обозначим АО .внут р- Таким образом получим [c.56]


    Механизм, с помош,ью которого ферменты реализуют этот принцип, можно раскрыть в самом общем виде на модели (рис. 17, /). Пусть системе а присущи какие-то определенные значения величин AG и ДО внутр (характеризующих, соответственно, сорбцию группы R на ферменте и последующее химическое взаимодействие X и Y). Для другого субстрата (система б), содержащего в молекуле два фрагмента RhR, способных сорбироваться на ферменте, потенциальная свободная энергия сорбции в принципе должна быть термодинамически более благоприятной. С другой стороны, образование фермент-субстратного комплекса в этом случае явно сопряжено с гораздо большими [c.58]

    Согласно теории индуцированного соответствия, выдвинутой Кош-ландом мл. [43, 44], в свободном ферменте (в отсутствие субстрата) каталитически активные группы X и X расположены так, что они не могут одновременно взаимодействовать с субстратным фрагментом Y (см. схему а на рис. 17, //). Энергетически менее предпочтительная, но каталитически активная конформация активного центра образуется лишь в фермент-субстратном комплексе (схема б). На образование ее тратится часть свободной энергии сорбции. [c.60]

    Расходование свободной энергии сорбции должно идти в этом случае продуктивно, т. е. конформационно-сольватационные изменения в глобуле, сопровождающие сорбцию субстрата на ферменте (или следующие за ней), должны быть одновременно полезными (и необходимыми) для образования переходного состояния последующей химической стадии. Это следует из того, что общий выигрыш свободной энергии активации для субстратов, содержащих в молекуле гидрофобную группу Н, составляет полную величину потенциальной свободной энергии сорбции, равной согласно механизму (4.41) 2А0 стр (как это наглядно показано на рис. 44 и следует, например, из уравнения 4.39). [c.156]

    С помощью уравнения (3.3) может быть вычислена константа Генри К уравнения (3.1) и уменьшение свободной энергии сорбции в стандартных условиях АС°  [c.72]

    Этот параметр не зависит от размеров колонки и широко используется в хроматографической литературе и расчетах. Коэффициент емкости не является чисто формальной величиной, он непосредственно связан с коэффициентом распределения в данной системе К и свободной энергией сорбции ДС  [c.18]

    Ддя описания связи между хроматографическими параметрами удерживания и свободной энергией сорбции Рорпшайдером предложено следующее эмпирическое уравнение С 3 3  [c.142]

    Р1 — давление на входе в колонку Ро — давление на выходе из колонки А(ДО) — разность свободных энергий сорбции двух компонентов Q — теплота сорбции К — газовая постоянная [c.253]

    Определение различий свободных энергий сорбции двух соседних компонентов  [c.258]

    Целью данной статьи является рассмотрение возможности адсо -ционной хроматографии как метода получения физико-химической информации о системе битум-минерал. Движение вещества по хроматографической колонке определяется физико-химическими свойствами и характером мажмолекулярных взаимодействий сорбента и сорбата. Поэтому в уравнения, описывающие движение вещества по колонке, входят различные термодинамические характеристики системы, например свободная энергия сорбции. [c.142]

    Наряду с катализом за счет свободной энергии сорбции (см. 1—4 этой главы) ферментативные реакции находят источник ускорения в том, что молекула субстрата подвергается химической атаке не одной каталитической группой (как это происходит в гомогенно-каталитических реакциях второго порядка), а сразу несколькими. Это связано с тем, что третичная структура белка позволяет сосредоточить в активном центре фермента значительное число электрофильных и нуклеофильных групп, таких как имидазольная, карбоксильная, сульфгид-рильная, аммонийная, фенольная и др. (см. гл. I), которые, как известно из гомогенного катализа, представляют собой общекислотные и общеосновные катализаторы. Именно поэтому в промежуточных фермент-субстратных комплексах в принципе возможна атака сорбированной субстратной молекулы по механизмам общего кислотноосновного катализа. [c.61]

    Таюш образом, можно рекомендовать оценивать сцепление битумов с минеральными материалами по разности свободных энергий сорбции тест-веществ В (л (г) с помощью газовой хроматографии. [c.145]

    Изучена возможность применения газовой хроматографии для оценки адгезии битумов к минеральным материалам. Найдено,что по1саза-телем оценки адгезии может служить такая термодинамическая характеристика, как - разность свободных энергий сорбции. Показано, что iл с) может быть рассчитана на основе параметров удерживания исследуемой хроматографической системы, где сорсЗентом служит минерал, модифицированный 1% анализируемого битума, а сорбитом - тест-вещества, используемые в газовой хроматографии. Библ.З, табл.З. [c.168]

    Вклад гидрофобного взаимодействия в свободную энергию сорбции органической молекулы на ферменте можно оценить теоретически [261. Однако более плодотворными для оценки прочности гидрофобной связи оказались некоторые эмпирические критерии. В их основу положено представление, что образование комплекса белок — органический лиганд, возникаюш,его в результате гидрофобных взаимодействий, можно рассматривать фактически как термодинамически выгодный перенос аполярной молекулы (или ее фрагмента) из воды в органическую фазу беЛка. Величина поверхности связываемой молекулы [40, 41] — это весьма частный критерий, поскольку на его основании нельзя сравнивать комплексующие свойства соединений, содержащих в молекуле различного рода полярные заместители. Недостаточным критерием гидрофобности ингибиторов или субстратов следует считать также и растворимость их в воде. Использование этой величи- [c.26]


    Нерешен также и вопрос о ковалентном катализе. В ряде ферментативных реакций образуются промежуточные соединения с ковалентной связью между ферментом и субстратом [29, 48, 49]. В качестве примера можно указать на протеазы, где в ходе ферментативной реакции образуется ацилфермент (см. гл. IV). Трудно сказать, почему реакция не протекает прямо, а идет через образование промежуточного соединения с ферментом (или коферментом). В этом отношении Дженкс [29] указал, что именно здесь могут быть заложены важные химические закономерности ферментативного катализа, которые в настоящее время почти или вообще не поняты . Не исключено, однако, что причина простая, а именно, что в ковалентно-связанном промежуточном соединении легче, чем в сорбционном фермент-субстратном комплексе, реализуются различного рода механизмы напряжения, которые позволяют использовать свободную энергию сорбции химически инертных субстратных фрагментов на ферменте на понижение активационного барьера скоростьлимитирующей химической стадии (см. 4 этой главы). Возможно, наличие промежуточных соединений в ферментативных механизмах отражает лишь сложную картину участия в реакции большого числа функциональных групп, многие из которых вообще склонны образовывать ме-тастабильные продукты (как, например, имидазольная группа [29]). Иными словами, образование промежуточных соединений хотя и сопровождает ферментативный катализ, но, возможно, не имеет прямого отношения к наблюдаемым ускорениям. [c.66]

    Уравнение (4.27) означает, что величина специфического эффекта в скорости ферментативной реакции линейно возрастает с увеличением показателя гидрофобности я субстратной группы R. Это находится в резком диссонансе с данными по модельной реакции щелочного гидролиза этиловых [107—109] или л-нитрофениловых [110—112] эфиров тех же карбоновых кислот, где константа скорости второго порядка практически не зависит от длины алифатической цепи. В ферментативной же реакции с увеличением углеводородного фрагмента в субстратном остатке понижается свободная энергия активации примерно на —600 кал/моль (—2,5 кДж/моль) на каждую СНа-группу [что следует из (4.27)], если учёсть, что значение я для СНа-группы равно 0,5. Найденное значениеЛЛ <7 согласуется с величиной свободной энергии сорбции на активном центре алифатических соединений (см. 4 этой главы). [c.149]

    В согласии с механизмом (4.40) субстратоподобный ингибитор действительно вытесняет из активного центра несколько молекул воды, как это было обнаружено при рентгеноструктурном анализе кристаллического химотрипсина [123]. Однако этот механизм не согласуется с данными по влиянию среды на гидрофобное фермент-субстратное взаимодействие (см. 4 этой главы). Кроме того, механизм (4.40) противоречит тому, что двойной выигрыш свободной энергии экстракции реализуется лишь в переходном состоянии химической реакции [см. уравнение (4.39)], в то время как в комплексе Михаэлиса вклад гидрофобного фермент-субстратного взаимодействия меньше [см. уравнение (4.29)]. Иными словами, в химотрипсиновом катализе не вся потенциальная свободная энергия сорбции, которую предполагает модель (4.40), равная 2АСэкстр, реализуется в виде прочного связывания субстрата с ферментом. Из диаграммы, представленной на рис. 44, видно, что в комплексе Михаэлиса (или ацилферменте) реализуется в виде свободной энергии связывания E-R лишь инкремент свободной энергии сорбции, отражающий перенос субстрата из воды в неводное окружение (в среду белковой глобулы), равный АО кстр [см. также уравнение (4.29)]. Для объяснения этих фактов следует допустить, что гидрофобное фермент-субстратное взаимодействие идет в две стадии 1) образование фермент-субстратного комплекса протекает по механизму (4.19), который не противоречит данным по солевому эффекту (на их основании он был и предложен), и термодинамические закономерности его согласуются с уравнением (4.29). Этот механизм также предполагает вытеснение нескольких молекул воды из [c.155]

    На стадии 2 в механизме (4.41) происходит фактически более эффективное термодинамически выгодное гидрофобное взаимодействие между ферментом и субстратом. Однако этот процесс не приводит к более про чному связыванию субстрата на ферменте, поскольку сопровождающие его термодинамически невыгодные конформационно-сольвата-ционные изменения в белке протекают полностью за счет потенциальной свободной энергии сорбции (гидрофобного взаимодействия). [c.156]

    Ддя описания связи ивхду хроматографическими параметрами удерживания и свободной энергией сорбции Роршнайдером предложено сле-дущее эмпирическое уравнение Г 3 3  [c.142]

    С помощью уравнения (10.49) может бьггь вычислена константа Генри К уравнения (10.47) и уменьшение свободной энергии сорбции в стандартных условиях ДС  [c.515]

    Как указывают Ма и Манцел [17], представляет собой центр тяжести хроматографического пика, и его можно использовать для определения таких равновесных величин, как константы сорбции. Если измерения проводились при разных температурах, то можно рассчитать теплоту, энтропию и свободную энергию сорбции. [c.469]


Смотреть страницы где упоминается термин Свободная энергия сорбции: [c.42]    [c.46]    [c.50]    [c.57]    [c.58]    [c.59]    [c.138]    [c.253]    [c.585]    [c.86]    [c.142]    [c.86]    [c.86]    [c.16]   
Высокоэффективная жидкостная хроматография (1988) -- [ c.18 , c.86 ]

Высокоэффективная жидкостная хроматография (1988) -- [ c.18 , c.86 ]




ПОИСК





Смотрите так же термины и статьи:

Свободная энергия

Сорбция



© 2025 chem21.info Реклама на сайте