Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферменты аминокислот связывание

    На рис. 5.1 приведены некоторые доступные синтетические акцепторные соединения. Можно ли использовать такие органические краун-эфиры в качестве аналогов ферментов для разделения энантиомеров (или рацемических смесей) Крам и др. сообщили, что хиральные комплексы краун-эфиров действительно обладают этим удивительным свойством селективно связывать один из антиподов аминокислотных производных [134—136]. При создании акцепторных молекул неоценимую помощь оказывают молекулярные модели Кори — Полинга — Колтуна [137, 138]. Пространственные модели дают возможность находить акцепторные структуры, способные связывать в качестве доноров определенные аминокислоты. Например, главное при создании акцептора — это вопрос влияния взаимного расположения центров связывания на их связывающую снособность. Другая проблема заключается во введении заместителей в такие положения, которые направлены к функциональным или связывающим центрам до-норных соединений [137]. [c.267]


    Пример неконкурентного ингибирования дезаминирование аминокислот, например, аланина и фенилаланина. Вероятно, связывание этих АК будет происходить неконкурентно, в разных участках фермента, так как структура АК различна. В этом случае при взаимодействии субстрата и ингибитора с ферментом нет конкуренции за связывание, но образуется непродуктивный тройной комплекс фермент-субстрат-ингибитор, поэтому максимальная скорость реакции будет меньше, чем при нормальных условиях. Оба вида ингибирования представлены графически на рис. 10. [c.34]

    С другой стороны, эти ферменты сильно различаются по специфичности их действия. Так, сериновые протеазы а-химотрипсин и эластаза осуществляют гидролиз пептидной связи, образованной аминокислотой, содержащей в положении гидрофобную боковую группу R при этом специфичность а-химотрипсина определяется объемным гидрофобным радикалом в молекуле субстрата (типа боковой группы фенилаланина, триптофана), а для эластазы — метильной группой аланина. Механизм наблюдаемой специфичности обусловлен весьма незначительными различиями в строении активных центров этих двух ферментов. По данным рентгеноструктурного анализа, в активном центре а-химотрипсина имеется довольно вместительный гидрофобный карман , где связывается ароматическая боковая группа гидролизуемого пептида (рис. И, а ср. с рис. 9). В активном центре эластазы размеры сорбционной области, где происходит связывание метильной группы субстрата (рис. 11, б), намного меньше, чем в случае а-химотрипсина. Это вызвано тем, что вместо Gly-216 и Ser-217 см. рис. 9) в соответствующих положениях эластазной пептидной цепи расположены более объемные остатки треонина и валина [3]. [c.35]

    Растворимая ферментная система, ответственная за синтез этого антибиотика, состоит из крупного белка с мол. весом 280 000, который активирует аминокислоты в виде аминоациладенилатов и переносит их на тиоловые группы молекул 4 -фосфопантетеина, ковалентно связанные с ферментом [26, 27]. Таким образом, обеспечивается связывание четырех аминокислот, а именно пролина, валина, орнитина (орнитин см. на рис. 14-2) и лейцина. Активацию фенилаланина обеспечивает другой фермент (мол. вес. 100 000). Формирование полимера инициируется, вероятно, активированным фенилаланином ) и осуществляется аналогично тому, как это имеет место в процессе удлинения цепи жирных кислот (разд. Г,6). Инициация происходит в то время, когда аминогруппа активированного фенилаланина (на втором ферменте) атакует ацильную группу аминоацилтиоэфира, при помощи которой удерживается активированный пролин. Затем свободная иминогруппа пролина атакует активированный валин и т. д., в результате чего образуется пентапептид. После этого две молекулы пентапептида связываются друг с другом, и процесс образования антибиотика завершается замыканием цикла. Последовательность аминокислот в антибиотике строго специфична, и замечательным является тот факт, что эта сравнительно небольшая ферментная система оказывается способной осуществлять все стадии процесса в требуемой последовательности. Аналогичным путем синтезируются также и некоторые другие пептидные антибиотики — тироциди-ны и полимиксины. [c.491]


    При наличии в молекулах субстратов заряженных групп (например, у аминокислот) связывание их с ферментами происходит преимущественно за счет электростатических сил. При этом распределение зарядов в молекулах субстрата и фермента должно быть комплементарным (т. е. положительно заряженным участкам фермента должны соответствовать отрицательно заряженные группы субстрата, и наоборот). [c.30]

    В самом широком смысле фермент — это белок, обладающий каталитической активностью. Более точно его можно определить как полипептидную цепь или совокупность полипептидных цепей, обладающих в нативной форме каталитической активностью. Это сложный сополимер, состоящий из мономеров — аминокислот, находящихся в одинаковой конфигурации. Катализ происходит в специфической области фермента, которую называют каталитическим центром или каталитической щелью. Активный центр состоит из остатков аминокислот, которые участвуют в узнавании и связывании субстрата, а в каталитический центр входят только остатки аминокислот, прямо участвующих в процессе катализа. Согласно существующему представлению об активном центре, лишь некоторые группы в составе ферментов вызывают его высокую каталитическую активность, очень часто комплементарным [c.201]

    Последовательность превращений заключается в том, что сначала отщепляется молекула т-РНК, а затем возникает пептидная связь. Последний процесс катализируется двумя специальными ферментами, причем энергия доставляется молекулой ГТФ . При этом молекула м-РНК скользит по поверхности рибосомы, освобождая участки связывания (кодоны) для молекул т-РНК, несущих следующие аминокислоты. т-РНК отщепляется от карбоксила конца цепи лишь после завершения строительства всей полипептидной цепи. [c.393]

    Более стабильные ХМЭ получают с помощью реагентов, функциональные группы которых способны к образованию ковалентных связей с материалом электрода. Чаще всего используют кислородсодержащие соединения с окси-, гидрокси- или карбокси-группами, хотя возможно закрепление и других групп. В частности, для ковалентного связывания ферментов используют амино-, имидазольные и тиоловые группы боковых цепей аминокислот белка. Большим преимуществом ковалентного связывания является отсутствие утечки модификатора с поверхности электрода. При этом формируется устойчивый слой, который не разрушается при повторном использовании ХМЭ. Разнообразие методов связывания позволяет не затрагивать электроактивные функциональные группы. Тем не менее всегда необходимо специально изучать активность модификатора в растворе и в иммобилизованном состоянии. [c.481]

    Потребность в НАК, определяемая по методу азотного баланса, различна для разных видов животных н в большой степени зависит от физиологического состояния организма. Так, например, необходимые молодым млекопитающим во время роста незаменимые аминокислоты аргинин н гистидин для поддержания обмена веществ взрослой особи не нужны. Обе эти аминокислоты наряду с другими входят в состав активных центров многих ферментов. Они служат для узнавания н связывания отрицательно заряженных субстратов и кофакторов [19]. Недостаток аргинина может быть причиной импотенции мужской особи. [c.18]

    Образование активного центра (АЦ). АЦ называют совокупность остатков АК, расположенных в молекуле фермента определенным образом, так, что именно эти аминокислоты участвуют в связывании субстрата и образовании продукта реакции. В АЦ различают участок связывания и каталитический участок. В образование АЦ могут быть вовлечены даже очень отдаленно расположенные в полипептидной цепи АК, связанные нековалентными связями водородными, ионными, диполь-дипольными. Их энергия не более 4-40 кДж/моль, но таких связей в молекуле фермента очень много, и они играют решающую роль в механизме действия ферментов. [c.29]

    Существует множество примеров зависимости катализа и связывания от конформационных изменений. Участок связывания химотрипсина решающим образом зависит от наличия солевого мостика между аспарагиновой кислотой-194 и концевой аминогруппой изолейцина-16 (см. рис. 24.1.14). В неактивном предшественнике химотрипсина, химотрипсиногене, например, каталитические группы расположены так же, как и в нативном ферменте, но гидрофобный карман отсутствует [49]. Последний формируется в результате индуцированных образованием солевого мостика изменений конформации аспарагиновой кислоты-194 и соседних остатков аминокислот — глицина-193 и метионина-192. Согласно кинетическим экспериментам, проведенным на химотрипсине, нечто подобное происходит при протонировании свободной формы (ЫНг) изолейцина-16. Форма фермента, характерная для высоких значений pH, неактивна, так как она не способна связывать субстрат. При быстром понижении pH раствора неактивной формы фермента с 12 до 7 связывание наблюдается, но только по прошествии определенного отрезка времени (менее секунды), во время которого фермент принимает активную конформацию [111]. В этом случае конформационное изменение должно предшествовать связыванию и явно слишком медленно для того, чтобы являться частью нормального механизма. [c.516]


    При изучении механизма химической реакции, катализируемой ферментами, исследователя всегда интересует не только определение промежуточных и конечных продуктов и выяснение отдельных стадий реакции, но и природа тех функциональных групп в молекуле фермента, которые обеспечивают специфичность действия фермента на данный субстрат (субстраты) и высокую каталитическую активность. Речь идет, следовательно, о точном знании геометрии и третичной структуры фермента, а также химической природы того участка (участков) молекулы фермента, который обеспечивает высокую скорость каталитической реакции. Участвующие в ферментативных реакциях молекулы субстратов часто имеют небольшие размеры по сравнению с молекулами ферментов, поэтому было высказано предположение, что при образовании фермент-субстратных комплексов в непосредственный контакт с молекулой субстрата, очевидно, вступает ограниченная часть аминокислот пептидной цепи. Отсюда возникло представление об активном центре фермента. Под активным центром подразумевают уникальную комбинацию аминокислотных остатков в молекуле фермента, обеспечивающую непосредственное связывание ее с молекулой субстрата и прямое участие в акте катализа (рис. 4.2). Установлено, что у сложных ферментов в состав активного центра входят также простетические группы. [c.122]

    Различия в структуре АКТГ овцы, свиньи и быка касаются только природы 31-го и 33-го остатков аминокислот, однако все они наделены почти одинаковой биологической активностью, как и АКТГ гипофиза человека. В молекуле АКТГ, как и других белковых гормонов, хотя и не открыты активные центры наподобие активных центров ферментов, однако предполагается наличие двух активных участков пептидной цепи, один из которых ответствен за связывание с соответствующим рецептором, другой—за гормональный эффект. [c.259]

    Бактериальный фермент, катализирующий связывание азота, носит название нитрогеназа. Он представляет собой сложную белковую молекулу, состоящую из трех полипептидных цепей. У симбиотических видов Rhizobium этот белковый комплекс катализирует образование аммиака из атмосферного азота. Затем аммиак быстро перемещается в цитоплазму клеток хозяина, где он превращается в глутамин. В конечном счете фиксированный азот включается во все остальные аминокислоты. [c.407]

    Природу стереоспецифичности папаина помогает понять построение моделей [105]. Проведенные исследования показали, что D-аминокислоты не могут поместиться в подцентрах из-за стерических затруднений, возникающих при их контактировании с ферментом. Папаин не является экзопептидазой, поскольку свободная карбоксильная группа субстрата должна находиться на расстоянии 3—4 А от карбоксильной группы Asp-158 из-за электростатического отталкивания. Кроме того, указанные исследования позволили предположить наличие механизма деформации. В фермент-субстратном комплексе уходящая группа субстрата, по-видимому, подвергается давлению со стороны а-СШ-группы His-159, однако при образовании тетраэдрического промежуточного соединения это давление ослабляется. В пользу указанного предположения говорит тот факт, что аналоги субстратов, у которых уходящая группа заменена небольшой по размерам группой, связываются значительно прочнее аналогов с более крупными остатками [92, 105]. Специфичность подцентра S2 к большим по размеру гидрофобным остаткам проявляется в возрастании fe at, а не в увеличении прочности связывания. Лоу и Ютавонг [105] предположили, что связывание подцентром S2 такого остатка, как фенилаланин, приводит к некоторому увеличению размеров расщелины и к еще большей деформации активного центра [105]. Раздвижение стенок расщелины было впоследствии обнаружено при исследовании кристаллической структуры фермента, ингибированного хлорметил-кето-производным Ы-бензилоксикарбонил-Ь-фенилаланин-Ь-аланина [104]. Использование этого соединения указывает на наличие в ферменте центра связывания карбонильного кислорода расщепляемой пептидной связи. В этот центр, как и в случае сериновых протеаз, входит NH-rpynna полипептидного остова, принадлежащая ys-25 другая водородная связь образуется с участием ЫНг-группы Gln-19. [c.375]

    В биологических системах универсальным донором метильных групп является сульфониевое соединение S-аденозилметионин (SAM). В свою очередь SAM синтезируется из аминокислоты метионина и другого биологически важного соединения — адеио-зинтрифосфата (АТР), высокоэнергетического соединения (форма хранения биологической энергии). Как и вообще все химические реакции, протекающие в организме, эта реакция также катализируется ферментом. Реакция термодинамически выгодна и в отсутствие белкового катализатора, однако фермент катализирует ее определенное направление. Без катализатора возможны и другие реакции, например разрыв трифосфатной цепи катализатор же связывает и ориентирует нуклеофильный атом серы таким образом, что становится возможной атака только по метиленовому атому углерода. Позже подробно обсуждается важность такого связывания и эффектов сближения сейчас следует отметить, что, хотя аденозин в составе АТР и не участвует в химическом преврап енин, он служит для узнавания АТР ферментом Фермент узнает молекулу АТР и затем связывается с ней. [c.46]

    Последовательность аминокислот, или первичная структура фермента, определяет вторичную и третичную (трехмерную) структуры, т. е. свертывание пептидной цепи в макромолекуляр-ную глобулу, имеющую некоторую определенную полость для взаимодействия с субстратом или, если необходимо, с кофермен-том. Ферменты обладают сложной и компактной структурой, в которой боковые цепи полярных аминокислот, находящиеся на поверхности молекулы, направлены к растворителю, а боковые цепи неполярных в общем случае ориентированы внутрь молекулы, от растворителя. Трехмерная структура поддерживается большим количеством внутримолекулярных нековалентных взаимодействий аполярной, или гидрофобной, природы, а также благодаря ионным взаимодействиям, дисульфидным мостикам, водородным связям, иногда солевым мостикам [57]. Гидрофобные взаимодействия имеют наиболее важное значение, поскольку они, вероятно, ответственны за большую величину свободной энергии связывания, которая наблюдается при ферментсубстратных взаимодействиях. [c.202]

    Молекула этого фермента не очень большая его полипептидная цепь включает 129 аминокислот. Лизоцим — первый фермент, структура которого была установлена в 1967 г. с помощью рентгеноструктурного анализа [108]. В отличие от сс-химотрипсина по одной стороне эллипсоидальной молекулы лизоцима проходит глубокая щель для связывания субстрата. Щель разделена на 6 участков AB DEF. Остаток NAM может связываться только в участках В, D и F, тогда как остатки NAG синтетического субстрата могут связываться со всеми участками. Связь, которая подвергается расщеплению, находится между участками D и Е. [c.239]

    Неполярный участок связывания, расположенный вблизи каталитич. центра Т., обусловливает преим. расщепление ферментом субстратов, содержащих пептидные связи, образованные аргинином и лизином, негкэсредственно связанными с остатком ггоолина или с др. неполярными остатками аминокислот. Вблизи каталитич. центра располагается уникальная аминокислотная последовательность Туг — Pro — Pro — [c.13]

    Непродуктивное связывание предотвращает гидролиз пептидов, состоящих из нежелательных о-аминокислот. Пептиды, состоящие из D-аминокислот, также могут прочно связываться химотрипсином. Однако в этом случае образуется сравнительно малореакционноспо-собный фермент-субстратный комплекс, поскольку расщепляющаяся связь не ориентирована должным образом относительно каталитического центра [629] таким путем свободная энергия связывания расходуется на ингибирование реакции с аналогом субстрата, которая могла бы привести к нежелательным продуктам. Непродуктивное связывание, по-видимому, является общим механизмом, обеспечивающим специфичность фермента [630, 631]. [c.248]

    Фактором, определяющим силу взаимодействия между двумя молекулами, возможно, даже более важным, чем водородная связь или электростатическое притяжение, является гидрофобное связывание [8,84]. Молекулы или части молекул, недостаточно сольватируемые водой, разрушают сеть водородных связей, составляющую структуру растворителя. Это разрушение снижается в случае сближения таких молекул, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой. Углеводороды, например, образуют отдельную вторую фазу, в то время как детергенты, обычно представляющие собой длннноце-почечные углеводороды с полярными группами с одного конца, образуют мицеллы [9]. Последние представляют собой шарообразные агрегаты молекул с заряженными концевыми группами на поверхности, сольватпрованными водой и с углеводородными цепочками внутри, в контакте только друг с другом. Маленькие неполярные участки или полости на поверхности белка также слабо сольватированы водой, однако они не контролируют состояния агрегации молекулы в целом. Эти участки могут, однако, взаимодействовать с гидрофобными молекулами или частями молекул близкого размера, соединяясь с ними, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой, как это указано выше. При обсуждении трехмерной структуры химотрипсина уже рассматривался пример такого рода (см. с. 488). Вблизи активного центра этого фермента располагается образованный гидрофобными группами карман [46], размер которого позволяет связыванию в нем индольного бокового радикала остатка триптофана. Сам индол прочно связывается в этом кармане (энергия связывания 60 кДж-моль ) [88]. Селективность действия химотрипсина в отношении той или иной пептидной связи в большой степени определяется комплементарно-стью соответствующего бокового радикала аминокислоты этому гидрофобному карману. [c.505]

    Все данные, обсуждавшиеся в этом и предыдущем разделах, с очевидностью показывают, что процессы связывания и катализа взаимозависимы сложным образом. Например, утверждение, что наилучщими субстратами являются наиболее прочно связывающиеся соединения, неверно. Трисахарид очень хорошо связывается лизоцимом, производные D-аминокислот — химотрипсином, однако оба они субстратами не являются первый из них связывается не в том месте, а вторые — не в той ориентации. Более того, индуцируемое при связывании напряжение в молекуле субстрата может повышать скорость каталитической реакции, понижая в то же время эффективность связывания. Приводились данные такого рода в поддержку предположения, что каталитическая эффективность фермента, по крайней мере частично, зависит от его способности связывать субстрат в переходном состоянии более прочно, чем в основном состоянии [145]. Последнее может иметь место из-за невыгодных взаимодействий между ферментом и субстратом в основном состоянии, снимающихся, как в случае лизоцима, в переходном состоянии. Другой причиной этого явления может быть действительное хорошее положительное связывание переходного состояния. Только последняя ситуация непременно приводит к более эффективному катализу [140], хотя при правильных условиях обе приводят к одинаковому результату. [c.532]

    Другой пример сильного взаимодействия белка с ДНК—регуляция оперона белком-репрессором. Наиболее изученным примером является 1ас-оперон Е. соИ [25]. Ген-регулятор кодирует синтез белка 1ас-репрессора, который затем связывается с соседним оператором. Связывание с белком-репрессором малой молекулы— индуктора, например изопропилтио-р- )-галактопиранозида, вызывает диссоциацию репрессора с операторного участка. Последующая транскрипция трех соседних генов оперона приводит к биосинтезу трех ферментов — Р-галактозидазы, галактозопермеазы и тиогалактозидтрансацетилазы. 1ас-Репрессор представляет собой тетрамерный белок, состоящий из идентичных субъединиц по 347 аминокислот каждая. Сродство репрессора к последовательности ДНК оператора зависит от ионной силы константа диссоциации в клетке, вероятно, менее 10 " моль/л . Структура участка связывания ДНК в 1ас-репрессоре до сих пор не выяснена, однако удаление трипсином 59 остатков с Л -конца и 20 остатков с С-конца предотвращает связывание. Несколько больше известно об участке связывания индуктора. Измерения флуоресценции показывают, что находящийся в участке связывания индуктора остаток триптофана при связывании перемещается в менее полярное окружение. Изучение изменения флуоресценции методом остановленного потока показывает, что процесс связывания проходит в две стадии. Быстрая начальная стадия подчиняется, как и ожидалось, кинетике второго порядка. Более медленная стадия мономолекулярна и, по- [c.569]

    Если конъюгат аминокислоты и пиридоксальфосфата ориентирован в активном центре фермента таким образом, что карбоксильная группа располагается перпендикулярно плоскости конъюгата, то пространственные и электронные факторы благоприятствуют протеканию реакции декарбоксилирования. Многочисленные данные свидетельствуют о том, что при катализе а-декарбо.ксилазами пространственное расположение атомов вокруг связи а-С—N определяется связыванием перифери- [c.206]

    Другой вид РЖ называется транспортной РЖ, имеет более низкую молекулярную массу и выполняет функцию связывания аминокислот и доставки их к строящейся молекуле белка. Для каждой из 20 биологических аминокислот существует своя транспортная РЖ. Процесс связывания ами-нокис ют на РЖ также является ферментативным. Для каждой из 20 аминокислот необходим свой фермент. Каждый фермент и каждая транспортная РЖ узнают свою аминокислоту. [c.734]

    Получены экспериментальные доказательства наличия в активном центре химотрипсина двух остатков гистидина и остатка серина, схематически представленных в трехмерной структурной модели предшественника этого фермента (рис. 4.3). Выявление химической природы и вероятной топографии групп активного центра—проблема первостепенной важности. Она сводится к определению природы аминокислот, их последовательности и взаиморасположения в активном центре. Для идентификации так называемых существенных аминокислотных остатков используют специфические ингибиторы ферментов (часто это субстратподобные вещества или аналоги коферментов), методы мягкого (ограниченного) гидролиза в сочетании с химической модификацией, включающей избирательное окисление, связывание, замещение остатков аминокислот и др. [c.123]

    Экспериментально доказано существование в любых клетках живых организмов специфических ферментов, катализирующих активирование аминокислот и связывание последних с определенными тРНК. Все эти ферменты вьщелены в чистом виде из Е. соИ, секвенированы, и для ряда их установлена трехмерная структура. [c.515]


Смотреть страницы где упоминается термин Ферменты аминокислот связывание: [c.58]    [c.345]    [c.398]    [c.341]    [c.724]    [c.367]    [c.445]    [c.113]    [c.389]    [c.44]    [c.45]    [c.46]    [c.46]    [c.482]    [c.510]    [c.514]    [c.529]    [c.566]    [c.110]    [c.494]    [c.513]    [c.515]   
Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Связывание

Ферменты аминокислоты



© 2024 chem21.info Реклама на сайте