Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коагуляция разновидности

    Коагуляционное осаждение. Разновидностью процесса депарафинизации отстоем является коагуляционное осаждение. При этом процессе в депарафинируемом растворе проводят коагуляцию третьего компонента, который захватывает взвешенные в растворе частицы парафина и этим способствует удалению их из раствора. [c.127]

    Физико-химические методы очистки, как и химические, наиболее широкое применение нашли в процессах производства нефтяных масел и их регенерации. Удаление загрязнений из масел при использовании этих методов происходит за счет коагуляции и последующего осаждения, адсорбции или растворения загрязнений. Разновидностью адсорбционной очистки является ионообменная очистка. [c.118]


    В основе современной теории коагуляции электролитами, равно как и коагуляции под влиянием другого любого воздействия, должны лежать представления об соотношении молекулярных сил притяжения и электрических сил отталкивания. Некоторые разновидности этой [c.89]

    Однако, как отмечалось выше, оценить число адсорбированных мостиковых ионов довольно трудно, если только очень небольшая доля от общего количества флокулирующих ионов в системе оказывается адсорбированной на коагуляте, т. е. когда такие ионы образуют мостиковые связи. Их наблюдения подтверждают, что имеется большое различие в эффективности коагуляции между мономерными разновидностями, но не исклю- [c.518]

    Херд [34] подвел итог различным теориям, которые выдвигались ранее относительно образования и структуры гелей кремнезема. Эти теории включают эмульсионную теорию, согласно которой кремнезем следует рассматривать как чрезвычайно вязкую жидкую фазу целлюлярную теорию, по которой воду рассматривают как содержащуюся в сплошной фазе кремнезема в виде капелек, и фибриллярную теорию, предполагающую, что кремнезем существует в виде смешанной массы фибрилл с водой в порах. Разновидности фибриллярной теории включают исключающие друг друга точки зрения 1) что структура образуется при коагуляции коллоида 2) что кремневая кислота присутствует в виде тонких кристаллов и 3) что фибриллы образуются большими молекулами поликремневой кислоты. Последнюю точку зрения поддерживает Херд. [c.46]

    Вторая, разновидность процесса — электрохимическая коагуляция, которая протекает при большой плотности тока и сопровождается электрохимическим растворением алюминиевого или железного анода. В воду поступают ионы алюминия или железа (И), которые в результате гидролиза образуют соответствующие гидроксиды. Катионы Fe + окисляются растворенным в воде кислородом или хлором до Fe + с образованием Ре(ОН)з. Последующие стадии, включающие в себя концентрационную и нейтрализационную коагуляцию коллоидных частиц, сорбцию коллоидных частиц примесей скоагулировавшими гидроксидами металлов и флокуляцию проходят по механизму, описанному при коагулировании воды. [c.136]

    Для малых частиц, в том числе и для большинства микробиологических объектов, наряду с контактной возможна и бесконтактная флотация, при которой частица закрепляется без образования периметра смачивания (микрофлотация) [34]. В этом случае процесс формирования агрегата пузырек—смачивающая пленка—частица целесообразно рассматривать на основе учения о дальнодействующих поверхностных силах (см. раздел 1.2). Элементарный акт микрофлотации можно представить как разновидность процесса гетерокоагуляции, т. е. коагуляции частиц различной природы, для которого справедливы основные положения теории гетерокоагуляции [1, 2]. С этих позиций микрофлотация происходит за счет образования потенциальной энергетической ямы, обусловленной либо различием потенциалов поверхности частицы и пузырька, даже если они одноименно заряжены, либо силами структурного притяжения. [c.29]


    Так как бактерии несут отрицательные заряды и обладают коллоидными размерами от долей до нескольких микрометров, в зависимости от их разновидности, при наложении электрического поля они, как и дисперсные частицы неорганических и органических веществ, поляризуются. Это может привести к дипольной обратимой или необратимой коагуляции и инактивации. [c.67]

    Вместо теории коагуляции Н. Ф. Богданов выдвигает теорию растворимости . На основании работ по фракционированию сырья жидким пропаном и других опытных работ исследователь пришел к выводу, что основой процесса деасфальтизации является различная растворимость углеводородов в пропане, т. е. наблюдается разновидность процесса экстракции. [c.38]

    Разновидностью коагуляции является флокуляция, при которой мелкие частицы, находящиеся во взвешенном состоянии в жидкой или газовой средах, образуют рыхлые хлопьевидные агрегаты-флокулы. в качестве эффективных добавок-флокулянтов-применяют растворимые полимеры, как правило, полиэлектролиты. [c.260]

    Многие разновидности органических соединений не растворяют получаемый осадок. Нерастворимые в воде соединения никакого влияния пе оказывают. Кроме того, соединенпя, гидроксилированные до высокой степени, такие, например, как этпленгликоль или сахар, являются неактивными. Некоторые соединения вызывают коагуляцию кремнезема даже в отсутствие желатина. [c.384]

    Вероятно, что коагуляция кремнезема под действием мономерных или одиночных катионов, поликатионов или положительно заряженных коллоидных частиц происходит посредством мостикового механизма, понимаемого в том смысле, что указанные положительно заряженные единичные образования служат как для нейтрализации отрицательных зарядов на кремнеземных частицах в точках их контакта, так и для образования осадка. Однако относительная эффективность многозарядных катионов зависит от того, какая доля этих агентов коагуляции адсорбируется на,,частицах кремнезема при критической концентрации коагуляции в растворе. Поскольку чем больше коагулянт по своему размеру и по числу положительных зарядов, тем выше при равновесии его адсорбированная доля, и оказывается, что полимерные разновидности проявляют гораздо большую эффективность по сравнению с мономерными. Так, О Мелиа и Стамм [257] отметили, что полимерные гидро-ксокомплексы железа(И1) адсорбируются значительно сильнее, чем мономерный трехзарядный ион металла. Такие комплексы действуют в качестве коагулянтов при гораздо более низкой суммарной критической концентрации коагуляции (к. к. к.), чем это имеет место для простых ионов Ре +, поскольку комплексы большей частью находятся в адсорбированном состоянии на кремнеземных частицах и лишь очень незначительная их доля остается в растворе. В случае же ионов Ре + только часть их адсорбируется на кремнеземе в точке к. к. к. Когда большая часть сложного коагулянта в рассматриваемой системе адсорбирована на частицах кремнезема, то соотношенпе между точкой к. к. к. и суммарной величиной поверхности кремнезема в системе становится более очевидным. Авторы пришли к заключению, что адсорбированные разновидности поликатионов железа (П1) вызывают агрегацию частиц кремнезема посредством формирования мостиков. [c.517]

    Пришли к заключению, что специфические химические силы взаимодействия должны иметь возможность преодолевать электростатические силы отталкивания. Адсорбция таких разновидностей железа на кремнеземе при одинаковом по знаку заряде должна включать образование связей Si—О—Fe. Такое положение согласуется с идеей о том, что образование химических связей между частицами кремнезема посредством включения в связь промежуточного мостикового атома или же промежуточной частицы фактически может представлять собой силы притяжения вместо предполагаемых вандерваальсовых сил , по крайней мере для случая кремнезема. Согласно некоторым авторам [220, 258], положительно заряженные коллоидные частицы — поликатионы действуют подобно мостикам между отрицательно заряженными частицами кремнезема, формируя таким образом трехмерную сетку. В таком случае коагулянт представляет собой часть осадка. Хан и Стамм [259, 260] выявили стадию, определяющую скорость процесса коагуляции частиц кремнезема при использовании гидролизованных ионов алюминия. Они постулируют три различающиеся стадии а) образование коагулянта в виде поликатионной разновидности посредством гидролиза и полимеризации алюминия (III) б) дестабилизацию дисперсии в результате специфической адсорбции изополикатионов, которая понижает потенциал поверхности коллоидных частиц кремнезема эта стадия обозначается как адсорбционная коагуляция в) перенос коллоидных частиц за счет броуновского движения или же существования градиента скоростей. Стадии а) и б) протекают быстро, тогда как стадия в) оказывается медленной, т. е. этапом, определяющим скорость всего процесса. Скорость коагуляции была получена как произведение значения частоты столкновений частиц на фактор эффективности таких столкновений. Авторы провели различие между адсорбционной коагуляцией в том случае, когда имеется скопление коллоидных частиц с гидролизованными ионами металла, способными сильно адсорбироваться на поверхности коллоидного кремнезема, и дестабилизацией в случае существования негидролизованных ионов металла, когда адсорбция указанных ионов оказывается значительной относительно общего количества ионов, присутствующих в растворе. [c.518]


    Обращение знака заряда на поверхности кремнезема. Растворимые гидролизованные ионы ТЬ +, Zr +, Ве +, 20 +, Ре + и А1 + способны ирочно адсорбироваться на кремнеземе, поэтому когда они содержатся в избыточном количестве по сравнению с тем содержанием, которое требуется для образования покрытия на поверхности кремнезема, то положительный поверхностный заряд меняется на отрицательный. Гидролизованные полимерные разновидности или основные соли металлов адсорбируются на кремнеземе при значительно меньшей величине pH, чем это наблюдается для простых гидратированных ионов. Механизм изменения знака заряда, как рассматривалось в гл. 4 в связи с обсуждением вопроса о коллоидных частицах кремнезема, в равной мере хорошо применим ко всем кремнеземным поверхностям (см. лит. к гл. 4 [424—435]). Подробное рассмотрение примера, связанного с изменением знака заряда, исследованного в работе [219], приводилось выше при описании адсорбции ионов алюминия. Как отметили Джеймс, Визе и Хили [276], в дисперсных системах, в которых наблюдается коагуляция иод воздействием гидролизованных ионов металла, нет никакой очевидной корреляции между электрокинетическнм потенциалом и устойчивостью коллоидной системы. Это показывает, что теория ДЛФО, ио-видимому, не может быть применена. Авторы работы сравнивали адсорбционное поведение ионов Со +, Га +, ТЬ + на одном и том же образце ЗЮг. [c.930]

    Флокуляция — разновидность коагуляции, при которой частицы дисперсной фазы образуют рыхлые хлопья (флокулы) в афегативно неустойчивых суспензиях. [c.328]

    Первый случай не специфичен для коллоидов, так как аналогичен фазовым переходам в молекулярных растворах. Его разновидностям, приводящим к образованию периодических структур, посвящена прекрасная монография Ефремова. Поэтому мы не включили этот случай в книгу. В ней рассмотрен почти исключительно третий случай. Это объясняется тем, что второй случай, например старение золей, отвечает процессам, представляющим несравненно меньший практический интерес вследствие обычно медленного протекания, и несравненно меньший теоретический интерес вследствие простоты механизма и его трактовки. Наоборот, устойчивость коллоидов, связанная с резко замедленной коагуляцией, имеет разнообразные практические применения большого значения, и ее теория породила целую область фундаментальных разработок. Эти разработки связаны с изучением свойств тонких прослоек и действующих в них сил. Можно сказать, что исследования коагуляционной устойчивости коллоидов способствовали созданию новой науки - науки о поверхностных силах и их проявлениях в свойствах тонЙЭВБДр молекулярных слоев. В свою очередь изыскания в этой Н(в( й6М ВМЯ№ Знания дали вклад и в смежные науки учения о молекулярнБй в %( ки их кристаллах, электрохимию, теорию массопереноса, некогорьИ ШДеш неравновесной термодинамики, биофизику, гидротехнику и почвоведение, учение о земной коре. Поэтому было естественно объединить в одной книге проблему устойчивости коллоидов и тонких пленок. [c.3]

    D-D )g где т — вязкость дисперсионной среды и — скорость оседания частицы в дисперсионной среде О — плотность частицы О — плотность дисперсионной среды g — ускорение силы тяжести. Ф-ла Стокса с соответствующими поправками применима к частицам размером 10 10 м.и, пребывающим в строго ламинарном движении. Большое значение для С. а. имеет подготовка исследуемой пробы (ее диспергирование), к-рая заключается в намачивании материала (длящемся до 24 ч), кипячении его (длящемся до 1 ч), обработке ультразвуком и введении в суспензию малых количеств поверхностно-активных веществ (стабилизаторов), препятствующих коагуляции. Природные материалы (гл. обр. глинистые породы) могут быть сцементированы солями или обратимыми коллоидами гораздо чаще образование природных агрегатов связано с коагуляцией глинистых коллоидных растворов электролитами. Осн. методы С. а. заключаются в гидростатическом взвешивании осадка в процессе образования. Наиболее просто массу осадка определяют погружением в суспензию чашечки весов и регистрацией массы (седиментометр Фигуровского). Применяют также пииеточный, аэрометрический и др. методы. Разновидностью С. а. является фотоседиментаци-онный анализ, основанный на измерении интенсивности пучка света, прошедшего через суспензию или отраженного ею, во времени с по.мощью фотоэлемента (интенсивность узкого параллельного пучка света зависит от концентрации [c.358]

    Разновидностью электролитической коагуляции является предложенная В. Д. Дмитриевым электрореагентная коагуляция, при которой взаимодействие примесей воды осуществляется под действием электрического поля за счет введения пониженных по сравнению с расчетными дозами химических реагентов. При этом возможно использование растворимых электродов или нерастворимых анодов (графит, ОРТА, ОКТА и других), а также растворимых катодов (алюминий и другие). [c.122]

    Промышленное производство тиокола чрезвычайно просто. При прибавлении водного раствора тетрасульфида натрия к дихлорэтану начинается энергичная реакция, в результате которой полимер образуется в виде глыб, с большим трудом поддающихся очистке. Этот недостаток пытаются устранить добавками диспергирующих веществ, нанример гидроокиси магния. Для этого в чан, содержащий раствор тетрасульфида натрия и гидроокиси магния, приливают из мерника дихлорэтан при хорошем перемешиваиии. Поскольку выделяется большое количество тепла температуру регулируют скоростью прибавления дихлорэтана и ногруженным холодильником. Образуется тонкая эмульсия, которая медленно отстаивается и затем отделяется от избытка тетрасульфида и от раствора хлористого натра. Эмульсию отмывают от примесей водой и затем прибавляют кислоту, которая вызывает коагуляцию с выделением каучукообразиого вещества. Продукт сушат на вальцах и выпускают в виде рулонов. Все остальные разновидности тио-колов получают аналогичным методом. [c.384]


Смотреть страницы где упоминается термин Коагуляция разновидности: [c.97]    [c.384]    [c.78]    [c.496]   
Химия кремнезема Ч.1 (1982) -- [ c.267 ]




ПОИСК





Смотрите так же термины и статьи:

Коагуляция



© 2025 chem21.info Реклама на сайте