Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сжижение охлаждением

    Реактор, подобный описанному в работах [И, 12], представлял собой стеклянную пробирку объемом 150 мл, в которой имелись четыре вертикальных отбойника из нержавеющей стали, расположенные под углом 90° друг к другу, и три импеллера с прямоугольными лопастями, смонтированные на оси мешалки. Это давало возможность интенсивно перемешивать содержимое аппарата. Реактор, частично погруженный в ацетон, охлаждали либо сухим льдом, либо опециальной холодильной установкой, позволяющей получать температуру (ВПЛОТЬ до — 50 °С. Сверху реактор закрывали пробкой с четырьмя отверстиями (для оси мешалки, делающей до 1600 оборотов в минуту, для термометра сопротивления, для линий подвода кислоты и сжиженных охлажденных углеводородов). Линия слива в нижней части реактора была снабжена краном. [c.88]


    КОМПРЕССОРНЫЕ МАШИНЫ, применяют гл. обр. для перемещения и сжатия газов, а также их сжижения, охлаждения и др. Перемещение газа осуществляется под действием разности давлений на двух участках потока в замкнутых каналах (трубопроводах, газоходах и т, д.) или без них. В последнем случае перемещение газов наз. вентиляцией. Необходимая разность давлений определяется требуемой скоростью газового потока и допускаемым гидравлич. сопротивлением системы, возникающим при движении газа по трубопроводу. [c.444]

    В последнее время предложено хранить сжиженный охлажденный хлор в изолированных хранилищах под атмосферным или небольшим избыточным давлением [79—81]. Сообщается [82] о применении для хранения жидкого хлора сферических хранилищ емкостью до 2000 т (рис. 6-27). Хранилища с двойными стенками могут размещаться в бетонной шахте, служащей аварийной емкостью для жидкого хлора в случае разрыва хранилища. [c.355]

    Особое внимание следует уделить тому факту, что при проливе сжиженного охлажденного газа сначала образуется бассейн с жидкостью, который с течением времени переходит в облако. Поэтому воспламенение на ранних стадиях приводит к пожару разлитой жид- [c.356]

    В настоящее время производство фтора развито очень широко, так как его производная, газ фреон, применяется в бытовых холодильниках, а фторопласты — пластмассы на основе фтор углерода — в машиностроении, химической промышленности и атомной энергетике. Основным сырьем для Получения фтора служит флюорит — плавиковый шпат (СаРг). Промышленный способ производства — электролиз раствора бифторида калия в безводном фтористом водороде с последующим сжижением, охлаждением жидким азотом. [c.75]

    Сжижение охлаждением. Пример 1. Из смеси, содержащей 88 /о ЗО и 12 /о N3 по объему, требуется выделить ЗО, охлаждением рассолом с температурой—33° С, при 1 атм. Принимая начальную температуру газа равной 25° С, определить минимальное количество тепла, которое должно быть отведено при производстве [c.293]

    В случаях, когда используют такие марки ППУ, антикоррозионные свойства которых не изучены или не полностью соответствуют требованиям, приходится принимать соответствующие меры, усложняющие технологию процесса их нанесения [31]. Так, в ФРГ для хранения сжиженных охлажденных газов под давлением построен резервуар диаметром 18 м с теплоизоляционным слоем из ППУ. Для защиты от воздействия агрессивных сред резервуар помещен в стальную оцинкованную с обеих сторон обечайку, на которую нанесен слой химически стойкой пластмассы. [c.105]


    Так, Бутлеров обратил внимание на то, что при пропускании изобутилена в серную кислоту, даже разбавленную водой, образуются высококипящие продукты, из которых можно было извлечь полимеры изобутилена. Диизобутилен был им получен в следующих условиях сжиженный охлаждением изобутилен и наполовину разбавленная водой серная кислота помещались в толстостенную стеклянную трубку, конец которой затем оттягивался и запаивался. В течение суток или двух происходит полное смешение двух слоев жидкости и образуется однородная [c.79]

    Изучение свойств газов помогло решить проблему их сжижения. Жидкий аммиак был получен еще в 1799 г. путем охлаждения под давлением газообразного аммиака (с повышением давления повышается температура, при которой сжижается газ, и намного облегчается процесс сжижения). Особенно много этик вопросом занимался Фарадей. К 1845 г. ему удалось сжижить ряд газов, в том числе хлор и диоксид серы. Сразу же, как только давление снижалось до нормального, сжиженный газ начинал быстро испаряться. Поскольку процесс испарения проходит с поглощением тепла, температура оставшейся жидкости резко понижалась. В этих условиях жидкий диоксид углерода затвердевал. Смешав твердый диоксид углерода с эфиром, Фарадей смог понизить температуру до —78°С. [c.121]

    Природный газ после осушки и охлаждения приблизительно до—20° направляют в абсорбционную колонну, орошаемую легким абсорбционным маслом. Неабсорбированный газ (метан и азот) проходит через второй абсорбер, орошаемый тяжелым маслом, которое задерживает легкое абсорбционное масло, увлеченное остаточным газом, после чего неабсорбированные газы по газопроводу направляются потребителям. Легкое масло иэ главного абсорбера поступает в метановую колонну, а затем во вторую колонну, в которой отгоняются этан и некоторые количества пропана и бутана. Этот дистиллят в следующей колонне установки разделяется на этан, сжиженный газ и некоторое количество газового бензина [21]. [c.29]

    Легкие углеводороды из остаточного газа можно выделить сжижением, компрессией и глубоким охлаждением. В этом случае из газа сначала должна быть отмыта углекислота, что связано со значительными потерями. Применение метода от.мывки маслом под давлением исключается в силу высокой стоимости сжатия газа. [c.96]

    Задача 16.8. Определить массовую долю газов, сжиженных в башне ректификации, если объемная доля углеводородов состава С1—С4 в газовой смсси 0,20. После охлаждения газа и конденсации бензина содержание углеводородов снижается до 0,02. [c.232]

    Неон получают совместно с гелием в качестве побочного продукта в процессе сжижения и разделения воздуха. Разделение гелия и неона осуществляется за счет адсорбции или конденсации. Адсорбционный метод основан на способности неона в отличие от гелия адсорбироваться активированным углем, охлаждаемым жидким азотом. Конденсационный способ основан на вымораживании неона при охлаждении смеси жидким водородом. [c.495]

    Поверхность конденсационно-холодильной аппаратуры и блока стабилизации следует рассчитывать на основе состава сырья. Из-за недостаточной поверхности охлаждения в блоке стабилизации ди-. стиллят охлаждается только до 60—65°С. Поэтому в сепараторе даже при высоком давлении (около 8,0 кгс/см ) до 50% дистиллята стабилизационной колонны переходит в газ. Выработку сжиженного газа можно довести до 0,6—0,7%, на нефть, изменив технологический режим блока стабилизации. [c.125]

    При производстве сжиженного природного газа используются циклы глубокого охлаждения. [c.203]

    Иа рис. 59 приведена схема однопоточного каскадного цикла. Ее особенность — получение хладагента из газа, подлежащего сжижению. Исходный газ разделяется на два потока один после дросселирования направляется в теплообменник <3, где охлаждается холодным потоком остаточного газа, другой поток — в теплообменники 2, 4. После охлаждения оба потока смешиваются и поступают в сепаратор 5, Углеводородный конденсат из сепаратора 5 направляется на газофракционирующую установку 10 и разделяется на индивидуальные углеводороды (этан, пропан, бутан) и пентаны + высшие. На основе чистых углеводородов готовится холодильная смесь. Отсепарированный газ из сепаратора 5 после сжижения в теплообменнике 6 дросселируется и поступает в отпарную колонну 7. В колонне из сжиженного газа отпариваются азот и часть метана, уходящие через верх колонны. Сжиженный природный газ из нижней ча-204 [c.204]

    Наиболее ответственным периодом является ввод трубопровода сжиженных газов в эксплуатацию. Перед пуском его предварительно охлаждают, для чего обычно используют сжиженный газ, подаваемый в трубопровод с рабочей температурой. Сжиженный газ движется по трубопроводу, испаряется и охлаждает стенки трубопровода. Паровую фазу сжиженного газа через определенные интервалы необходимо выпускать из трубопровода, чтобы обеспечить нужный для охлаждения трубопровода расход газа на входе и снизить давление паровой фазы в начале испарения сжиженного газа. При эксплуатации максимальная скорость сжиженного газа в трубопроводе не должна превышать 4,5 м/с, а коэффициент гидравлического сопротивления принимается равным 0,014 для всех трубопроводов [40]. Наряду с повреждениями трубопроводов сжиженных газов, связанных с трещинообразованием, большую опасность во время эксплуатации представляет разгерметизация трубопровода в местах соединений, обычно фланцевых. Эти аварийные ситуации возникают, как правило, в начальный период работы трубопровода и происходят из-за неправильного подбора материала герметизирующих прокладок, устанавливаемых между фланцами. [c.113]


    В 1968 г. в Портленде (штат Орегон, США) взорвался на завершающей стадии строительства стальной низкотемпературный резервуар сжиженных газов объемом 27,8 тыс. м . Расследование обстоятельств и причин взрыва показало, что на одном из пяти трубопроводов, соединяющих почти готовый резервуар с системой переработки газа, были открыты две задвижки. Этот трубопровод диаметром 152 мм предназначался для отбора паровой фазы и был соединен с системой охлаждения. После взрыва обнаружили, что ближайшая к резервуару задвижка полностью открыта, а задвижка, расположенная на некотором расстоянии от резервуара, закрыта полностью. Ко времени взрыва резервуар еще не был заполнен. Однако некоторое количество газа, использовавшегося в ходе опробования отдельных узлов комплекса, проникло в резервуар, что и привело к образованию взрывоопасной смеси с воздухом. Погибшие во время взрыва рабочие вели приготовления к нанесению минеральной ваты на перекрытие внутренней алюминиевой оболочки и, вероятно, вызвали искры, от которых произошло воспламенение. Стоимость низкотемпературного резервуара составляла 1,2 млн. долл. [c.131]

    Наиболее правильным решением проблемы пожарной безопасности при хранении сжиженных углеводородных газов является соблюдение требуемых противопожарных разрывов между резервуарами. Величину этих разрывов следует выбирать так, чтобы пожар, охвативший один резервуар, не мог распространиться на соседние при условии охлаждения их водой. [c.145]

    В промышленности применяют три метода сжижения хлоргаза метод высокого давления, при котором хлоргаз сжижают при обычной температуре и давлении 0,8—1,2 МПа, создаваемом компрессорами метод глубокого охлаждения, при котором хлоргаз сжижают при низкой температуре от —30 до —70 °С под небольшим избыточным давлением, и комбинированный метод, при котором процесс сжижения хлоргаза проводят при относительно неглубоком охлаждении (от —15 до —20 °С) и небольшом давлении (0,25—0,30 МПа). [c.52]

    В процессе конденсации хлоргаза прн удовлетворительном анализе газа из общего коллектора степень сжижения в зависимости от интенсивности охлаждения в каждой системе может быть различной и концентрация водорода в абгазах отдельных агрегатов может достичь взрывоопасных пределов. [c.54]

    Для предупреждения образования взрывоопасной концентрации водорода и возможного взрыва в производстве жидкого хлора применяют системы автоматического регулирования оптимальной степени сжижения поагрегатно, непрерывный контроль состава исходного хлора и абгазов после каждой системы конденсаторов, автоматическую систему противоаварийной защиты, обеспечивающую быстрое разбавление и охлаждение газовой среды во всей системе аппаратов и трубопроводов при образовании взрывоопасных концентраций водорода. На рис. 12 показана локальная схема автоматизации процесса коНденсации. [c.54]

    Разделение воздуха осуществляют главным образом глубоким охлаждением, сжижением и последующей ректификацией. Готовой продукцией воздухоразделительных установок являются газообразные и жидкие кислород и азот. На установках высокого давления кроме кислорода получают аргон и неоногелиевую смесь. Жидкий кислород представляет собой прозрачную голубоват/ю быстро испаряющуюся при комнатной температуре жидкость. При испарении 1 л жидкого кислорода при 20 °С и нормальном давлении образуется 860 л газообразного кислорода. Горючие газы (водород, ацетилен, метан и др.) образуют с кислородом взрывчатые смеси. Смазочные масла, а также их пары, при соприкосновении с чистым кислородом способны к самовоспламенению со взрывом. [c.121]

    При выборе способа хранения и конструкции резервуаров исходят из физико-химических свойств, токсичности и количества сжиженного газа, а также расположения склада, санитарно-гигиенических требований и др. В любом случае при проектировании нужно стремиться к минимальным объемам хранилищ и уменьшению вероятности утечки больших объемов газа с тем, чтобы предотвратить крупные аварии. При утечке сжиженных газов, хранящихся под высоким давлением, происходит их бурное вскипание, так как температура сжиженного газа в хранилищах высокого давления выше точки его кипения при атмосферном давлении. При этом могут образовываться большие количества газообразного горючего или токсичного продукта. При хранении под давлением, близком или равном атмосферному, когда сжиженный газ охлажден до [c.166]

    В наружной оболочке двухстенного вертикального резервуара должны быть штуцера для заполнения сухим азотом, пробоотборные краны и штуцера для выпуска газообразного продукта из меж-стенного пространства в случае появления утечки газа из внутреннего резервуара. Штуцера и бобышки на резервуаре следует располагать группами с минимальным их числом. Штуцера для заполнения вертикального изотермического резервуара сжиженным газом и слива его, а также люки-лазы следует располагать в нижней части выше уровня жидкости, оставляемого для испарения в пустом резервуаре с целью его охлаждения. Число люков-лазов должно быть не менее двух, они должны располагаться один против другого. [c.174]

    Материалы и конструкции фундаментов резервуаров и опор трубопроводов должны быть рассчитаны на возможность охлаждения при больших разливах и утечках сжиженного газа, а также на промерзание фундаментов от охлаждения хранимым сжиженным газом. Глубина заложения фундаментов и нагрузки на грунт должны исключать возможность недопустимых осадок, перекосов и повреждений от морозных вспучиваний грунта при розливе и утечках сжиженного газа. [c.177]

    В хранилищах сжиженного газа и особенно в резервуарах, работающих при давлениях, близких к атмосферному, не исключена вероятность создания вакуума. Вакуум в системе может возникнуть настолько быстро, что устройство для его снятия может не обеспечить необходимую защиту от смятия стенок резервуара. При быстром и неравномерном охлаждении резервуара могут возникнуть слишком большие напряжения в металле его стенок. Напряжение в металле стенок может возникнуть также и в результате местного охлаждения. Поэтому перед заполнением изотермический резервуар должен быть подвергнут продувке азотом, затем азот должен быть заменен газообразным продуктом, подлежащим хранению, и резервуар нужно охладить до рабочей температуре, после этого заполнить жидким газом. [c.178]

    В ракетной технике ирименяются следующие окислители Од, О3, Н2О2, Н1 0з, N204, N0, N20, С N00)4, С1Рз и 0Р2. Из этих окислителей О2, Од, N0, N30, Ра и ОРз представляют собой при обычной температуре газы и требуют для сжижения охлаждения или высоких давлений. В таблице 30 приведены физические свойства этих окислителей. [c.420]

    Газ сжимают до 3—4 ат, отводя теплоту сжатия водой, после чего охлаждают в три ступени до низкой температуры. Конденсат, выделяющийся на отдельных ступенях охлаждения, напра1зляют в стабилизационную колонну, из которой, как указывалось выше, в качестве головного погона отбирают сжиженные газы. [c.30]

    Остаточный газ первой ступени после отделения от него в холодильниках прямого дейстаия фракции, кипящей выше 150°, можно отмыть от углекислоты, подвергнуть сжижению методом глубокого охлаждения и затем полученную жидкость [c.95]

    А. с. 252262 способ энергоснабжения потребителей сжатого газа в шахтах — транспортируют сжиженный газ А. с. 958837 теплообменник снабжен прижатыми к нем лепестками из никелида титана при повышении температуры лепестки отгибаются, увеличивая площадь охлаждения [c.209]

    Этим объясняется высокий температурный градиент депарафи — низ ации (ТГД) при депарафини — зацли в растворах сжиженного пропана и легкого бензина (15 — 25 °С), что делает процесс неэкономичным из-за больших затрат на охлаждение раствора. Неполярные [c.255]

    Вследствие малой вязкости раствора сырья в сжиженном проьане скорость охлаждения при пропановой депарафинизации значительно выше, чем при использовании кетоновых растворителей. В процессе охлаждения, особенно остаточного сырья, совместная кристаллизация твердых углеводородов и оставшихся в рафи — нате смолистых веществ приводит к образованию крупных (дендритных) кристаллов, что обеспечивает повышенную скорость их фильтрования. Вследствие высокой растворяющей способности пропарга кратность его к сырью небольшая и составляет от 0,8 1 до 2 1 (об.). [c.267]

    Пары циркулирующего хладагента засасываются компрессором К и сжимаются в нем до рабочего давления (см. рис. 42, а). Сжатые пары хладагента подвергаются конденсации при температуре Т в конденсаторе ХК путем охлаждения 1 одой или воздухом. В холодильнике П-Х сконденсированный (сжиженный) хладагент переохлаждается до например, артезианской водой. Переохлажденный жидкий хладагент дросселируется в дросселе Д до температуры Та и испаряется в испарителе И за счет поднода теплоты Со охлаждаемым потоком. [c.125]

    Каскадное охлаждение основано на использовании соединенных последовательно нескольких парокомпрессионных машин с различными хладагентами, отличающимися по температуре кипения. Суть каскадного охлаждения состоит в том, что хладагент, сжижающийся при более высокой температуре, служит для конденсации паров труднее конденсируемого хладагента. Например, в стандартном каскадном цпкле сжижения природного газа обычно применяются три ступени. На первой в качестве хладагента используются пропан, фреон или аммиак, на второй — этан, этилен на третьей — метан, природный газ. [c.132]

    Известны другие случаи бурного выхода паров нз нескольких резервуаров сжиженных газов. В каждом случае теплый и тяжелый продукт закачивали в резервуар снизу и выход паров происходил при заполнении, до охлаждения продукта в нем. Данные явления до настоящего времени изучены недостаточно. Некоторые исследователи приписывают этот выход паров явлению ролловера. Другие объясняют тепловым переливом и феноменом поверхностного слоя . Но и те и другие считают, что внезапный мощный выброс паров сжиженных газов не может происходить в низкотемпературных резервуарах, содержащих однородные жидкости с одинаковой по всему объему плотностью, а также в резервуарах с жидким аммиаком, жидким кислородом или жидким азотом. В случае возникновения этих явлений, наблюдавшихся до сих пор, не происходило аварий, но объемы и скорости образования паров были достаточно велики, чтобы привести к аварии. [c.133]

    Взрывы резервуаров со сжиженным газом, находящихся в зоне пожара, вызываются повышением давления паров нагретого продукта. При разрушении ослабленного нагревом корпуса резервуара хранимые в нем сжиженные газы резко вскипают, образуя большое количество паровой фазы. Эффективное охлаждение резервуаров водой позволяет предотвратить рост давления. Количество воды, подаваемой на охлаждение, должно рассчитываться, исходя из всей поверхности корпуса резервуара. После пожара во Франции на нефтеперерабатывающем заводе в г. Фейзин подсчитали, что для охлаждения резервуаров со сжиженным углеводородным газом под давлением следует подводить до 10 л воды в 1 мин на 1 м поверхности резервуара. [c.146]

    На некоторых предприятиях требуется улучшить технические средства осуществления процессов димеризации ацетилена на медьсодержащем катализаторе сушки ацетилена твердым каустиком ксантогенирования целлюлозы очистки воздуха от ацетилена и других углеводородов в воздухоразделительных установках грануляции расплава транспорта карбида кальция компримирова-ния и транспортирования по трубопроводам, факельным и вентиляционным системам взрывоопасных газов хранения взрывоопасных газов в газгольдерах и сжиженных углеводородных газов в сборниках , глубокого охлаждения и конденсации газовых смесей, сопровождаемых образованием в жидкой или газообразной фазе [c.8]

    В хлорных производствах отмечены случаи взрывов в холодильниках смешения, где для охлаждения хлора использовали воду, содержащую значительное количество солей аммония. Даже при малых концентрациях треххлористого азота в исходном хлоргазе в процессе сжижения хлора при низких температурах создаются благоприятные условия для конденсации треххлористого азота. По литературным данным, жидкий хлор, содержащий 0,2% N013, приобретает взрывоопасные свойства, если остаток первоначального объема жидкости после испарения хлора составляет 1,5—2,0%, а содержание в ней треххлористого азота превышает 5%. Остаток такой жидкости может взорваться при нагревании выше 95 °С, контакте с органическими веществами, ударе и трении. [c.55]


Смотреть страницы где упоминается термин Сжижение охлаждением: [c.22]    [c.317]    [c.145]    [c.255]    [c.266]    [c.80]    [c.203]    [c.204]    [c.252]    [c.290]   
Смотреть главы в:

Термохимические расчеты -> Сжижение охлаждением




ПОИСК







© 2025 chem21.info Реклама на сайте