Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гипс образование

    Образование гипса происходит в результате взаимодействия привносимых в пласт сульфат-ионов или сульфонат-ионов с ионами кальция пластовых вод хлоркальциевого типа и с карбонатными составляющ,ими скелета пласта. Если в пласте выпадение кристаллов гипса в результате [c.144]

    Действие первых трех факторов сказывается при несовместимости различных типов вод, т. е. когда их составы существенно различаются. Например, смешивание воды, содержащей большое количество сульфатных ионов, с водой, в составе которой преобладают ионы кальция, может привести к образованию смеси с концентрацией гипса выше равновесной. [c.233]


    В связи с интенсивной химизацией добычи нефти возрастает роль процесса отложения солей — шестой фактор. Некоторые типы деэмульгаторов, ингибиторов коррозии, бактерицидов, кислот, щелочей, а также другие химические реагенты, закачиваемые в пласт, могут способствовать отложению солей в пласте и нефтепромысловом оборудовании. Например, ранее широко используемый деэмульгатор НЧК для некоторых объектов был основным источником образования гипса, так как в 100 %-ном реагенте НЧК содержится около 48 % ионов 502— При использовании НЧК гипс выпадает в нефтесборных парках, кустовых насосных станциях, в нагнетательных и добывающих скважинах и в пласте. [c.233]

    Образование зародышей происходит, как правило, на поверхности частиц наполнителя (гетерогенная конденсация), причем с большей вероятностью в местах контакта между этими частицами (отрицательная кривизна поверхности увеличивает пересыщение). Срастание частиц в кристаллизационную структуру начинается с появлением контактных зародышей — мостиков между образовавшимися кристалликами двухводного гипса или между частицами наполнителя. Рост этих зародышей увеличивает площадь контактов между частицами и тем самым прочность структуры. [c.388]

    На основе глиноземистого цемента, прибавляя к нему 25—30 % сульфата кальция в виде гипса или ангидрита, получают гипсоглиноземистый цемент. В основе процесса его затвердевания лежит образование эттрингита  [c.142]

    Сернистые соединения с открытой цепью углеродных атомов, по-видимому, все имеют вторичный характер. Незначительная роль их в нефти по сравнению с высокомолекулярной частью, содержащей серу, внедренную в циклические системы, позволяет рассматривать последние как первичную форму сернистых соединений, образованных углеводородами или другими органическими веществами, пришедшими во взаимодействие с серой. Следовательно, должен существовать какой-то источник серы, который бы мог обеспечить позднейшие реакции с углеводородами. Этот источник серы чаще всего видели в процессе восстановления сульфатов, сопровождающих многие нефтяные месторождения, главным образом в виде гипса. Предполагалось, что при взаимодействии с углеводородами возможно восстановление сульфатов с образованием углекислого газа, сероводорода и воды. Эта реакция, известная в технике в виде содового процесса, по Леблану, идет однако только при высоких температурах, нереальных в нефтяных месторождениях. Затем были открыты различные бактерии, которые при обыкновенной температуре и без доступа воздуха могут восстанавливать сульфаты до сульфидов, гидросульфидов и сероводорода. Механизм этой реакции понимается таким образом, что микроорганизмы, нуждающиеся в кислороде для создания живого вещества бактерий, заимствуют необходимый им кислород из сульфатов, переводя их в различные сульфиды, дающие с водой сероводород и кислые сульфиды по уравнениям  [c.178]


    Ранее проведенные термодинамические расчеты позволили выявить наиболее устойчивые к действию сероводорода продукты твердения цементного камня. Однако механизм поражения цементного камня существенно зависит от его агрегатного состояния. При газовой сероводородной агрессии механизм поражения носит объемный характер, разрушение сопровождается объемными изменениями камня. Кислород, попадающий в пласты, усиливает процесс поражения, благодаря образованию гипса и гидросульфоалюминатов в порах цементного камня. [c.50]

    Чаще предпочитают последний способ, так как он дает возможность все время поддерживать в аппарате слабокислую реакцию, что способствует образованию легко отфильтровываемого осадка гипса. [c.192]

    Добавка (5—25 %) к НС1 для удаления гипса, регулятор вязкости МР, предупреждает образование HjS в пласте [c.31]

    Результат опыта. На экране хорощо просматривается неоднородность образовавшегося кристаллического осадка. Снаружи видны тонкие линии гипса, направленные внутрь пятна, далее следуют кольцевые образования хлорида натрия, и, наконец, в центре пятна находятся кристаллы хлорида калия. [c.114]

    Грунты — любые горные породы, служащие объектом инженерно-строительной деятельности человека. По происхождению могут относиться к магматическим, осадочным или метаморфическим образованиям. По основным свойствам различают скальные грунты с высокой механической прочностью (кристаллические, изверженные или метаморфические, а также плотно сцементированные осадочные породы) полускальные грунты (сцементированные осадочные породы, например гипс, ангидрит, известняки-ракушечники, вулканические туфы и др.) , мягкие глинистые грунты (глины, суглинки, лёссы) рыхлые несвязанные грунты (галечник, гравий, пески) мягкие рыхлые легко деформирующиеся грунты (почва, торф, илы, плывунные пески). [c.179]

    По другим данным триклинный анортит пмеет характерные дифракционные максимумы с rf. А 3,21 3,19 4,05. Габитус кристаллов— таблицы, бруски бесцветный, белый или серый п = 1,589, Пт = 1,583, Пр — 1,576 (—) 2 V =1Т спайность совершенная по (001) и по (010). ИКС полосы поглощения при (см- ) 460—480 (деформационные колебания связи Si—О—S1) 570—625 (предположительно валентные колебания связи А1—О) 930 (валентные колебания связи Si—О). 7 пл = 1553°С. Растворим в НС1. Плотность 2,765 г/см . Твердость 6. При нормальных температурах и в гидротермальных условиях гидратируются с образованием геля. При наличии активизаторов (СаО, гипс) проявляет слабые вяжущие свойства. Получают из расплава. Встречается в основных и кислых доменных шлаках, золах. Конечный член плагиоклазовой серии твердых растворов. Один из распространенных минералов группы полевых шпатов. [c.205]

    Твердение гипсовых вяжущих веществ. Основная реакция, проис ходящая при твердении строительного и высокопрочного гипса, заключается в присоединении воды с образованием двуводного сульфата кальция  [c.198]

    Образование этой комплексной соли происходит в среде, насыщенной гидроокисью кальция (гидроокись кальция выделяется при гидролизе трехкальциевого силиката цемента). Как указывалось (гл. V, 3), возникновение гидросульфоалюмината кальция, кристаллизующегося с 31—32 молекулами воды, вызывает значительное увеличение объема системы рост кристаллов соли влечет разрушение цементного камня. Поэтому портландцемент, смешанный с большим количеством гипса, не может служить вяжущим веществом. [c.199]

    Добавки поверхностно-активных пластификаторов к строительным материалам — цементным растворам и бетонам резко снижают водо-потребность. Они обеспечивают переход к жестким и вместе с тем однородным смесям, способствуя равномерному перемешиванию, а после затвердевания — повышению качества бетона (плотности и морозостойкости), прочности, а при сохранении равной прочности — к значительной экономии цемента (10—20%). Вместе с тем добавки пластификаторов могут значительно замедлять начальную стадию кристаллизации и образование сростков кристалликов новой гидратной фазы при твердении цемента, гипса или извести в строительных материалах. Это удлиняет индукционный период кристаллизационного структурообразования, снижает интенсивность тепловыделения (вследствие экзотермического эффекта при гидратации, часто ведущего к возникновению опасных тепловых напряжений). В гидротехническом строительстве применение малых добавок поверхностно-активных пластификаторов позволяет укладывать массивный бетон в блоки больших размеров (размеры блоков лимитируются интенсивностью тепловыделения, т. е. перепадами температур, возникающими между ядром блока и его поверхностью). [c.71]

    Растворение компонентов и последующее выкристаллизовыва-ние их гидратных форм (обычно, менее растворимых) из пересыщенных растворов составляет основу твердения цементов и других минеральных вяжущих (глина, известь, гипс). Образованием и свойствами этих структур можно также в значительной степени управлять, вводя ПАВ и электролиты. [c.269]


    Результаты мониторинга показывают, что на Восточно-Сулеевской площади в попутно добываемой воде уровень катионов кальция значительно выше, чем сульфат-анионов, поэтому гипсо-образование практически всегда лимитируется концентрацией 804 и происходит, когда она превышает 500 мг/л. [c.132]

    В технологиях повышения нефтеотдачи могут быть использованы крупно- и среднетоннажные щелочные отходы нефтехимических производств дистиллерная жидкость (ДЖ), содово-сульфатные стоки (ССС), щелочные стоки производства капролактама (ЩСПК) и т.п. Так, для получения в пласте осадков гипса (сульфата кальция) может бьггь использована последовательная закачка ССС и хлорида кальция [122]. На ряде месторождений АНК Башнефть в системах поддержания давления использовали ДЖ - крупнотоннажный отход содового производства. ДЖ содержит в своем составе большое количество хлорида кальция, который при смешении с минерализованными водами образует мелкодисперсные осадки гипса. Образование осадка в водопромытых каналах и трещинах способствует увеличению охвата пласта заводнением, более равномерному вытеснению нефти и снижению обводненности продукции [108,123]. [c.27]

    При удалении воды из частиц двуводного сульфата кальция в виде пара (в открытых аппаратах) происходит их диспергирование, порошкообразный двугидрат под воздействием выделяющихся паров воды приобретает подвижность и начинает как бы кипеть. В результате такой термической обработки двуводного гипса в ненасыщенной водяными парами атмосфере происходит разрыхление его кристаллической решетки и образуется полуводный гипс Са804-0,5Н20 в виде р-модификации. р-Полугидрат имеет вид тонких волокон, ориентированных под углом 60° к оси С кристалла гипса. Образование новой фазы начинается с поверхности кристалла гипса и постепенно распространяется вглубь с сохранением [c.18]

    При действии пароз и водных растворов серной кислоты на цементный камень получается гипс, образование которого сопровождается увеличением объема, возникновением внутренних напряжений и мелких трещин в бетоне, снижающих его прочность. Кроме того, в результате взаимодействия гипса с трехкальциезым алюминатом ЗСа0-А1 0з, содержащимся в клинкере портландцемента, образуется сульфоалюминат кальция, вызывающий также значительное увеличение объема, растрескивание и разрушение бетона. [c.47]

    Так, при действии паров или растворов серной кислоты на бетон получается гипс, образование которого сопровождается увеличением объема, возникновением внутренних напряжений и появлением трещин в бетоне. Пары соляной или азотной кислоты образуют со свободной известью, содержащейся в бетоне, хорошо растворимые в воде хлориды и нитраты кальция. Даже очень слабые кислоты (угольная) способны реагировать с кальциевыми соединениями, образуя растворимые соединения. Коррозия бетона происходит тем интенсивнее, чем выше концентрация водных растворов кислот. При повышенных температурах агрессивной среды коррозия бетонов ускоряется. Как и бетон на обыкновенном портландцементе, бетоны, изготовленные на других видах гидравлических вяжущих, не являются кислотостойкими, что объясняется довольно высоким содержанием в них окиси кальция. Несколько более высокой кисло-тостойкостью обладает бетон, изготовленный на глиноземистом цементе, из-за пониженного содержания окиси кальция. [c.9]

    Сырьем для получения SO2 служит также гипс aSU4-2[I20 и ангидрит aS04, Эти минералы при 1350 —1400 °С разлагаю ся с образованием SO2  [c.391]

    Гораздо большего внимания требует сохранность цементного камня нагнетательной скважины, так как в нем содержится определенное количество гидратов окиси кальция. При контакте серной кислоты с цементом в результате взаимодействия с ионом Са ион 804 оказывает разрушающее действие, так как происходит образование двуводного гипса с одновременным формированием механических трещин в цементном камне. При контактировании с водой прочность камня, как показали лабораторные исследования [23], практически восстанавливается. В промысловых условиях заметное ухудшение механических свойств сформировавшегося уже цементного камня скважин может происходить лишь при длительном контактировании с серной кислотой. Поэтому для сохранения надежности нагнетательной сквал<ины серную кислоту необходимо подавать с большой скоростью, но по возможности при пониженном давлении, так же, как и первые, следующие за оторочкой порции воды. [c.145]

    По данным [15], переход растворенных солей в кристаллическое состояние и их отложение в призабойной зоне скважины происходят при степени пересыщения С/Снас = 1,01. В работе [10] отмечается, что при таких малых степенях пересыщения в пористых пластах многих месторождений формирование зародышей твердой фазы, например гипса, исключается, так как средний размер пор в 2—4 раза меньше критического радиуса кристаллов Са304-2И20. Но на практике возможно выпадение твердой фазы, так как пористая среда может способствовать образованию зародышей с радиусом меньшим, чем г р. [c.231]

    Органический мир также играет существенную роль в накоплении осадочных пород. Из известковистых скелетов отмерших морских организмов образуются пласты известняков. Нередко скелеты их имеют кремнистый состав. Тогда образуются кремнистые диатомиты и опоки. В результате жизнедеятельности кораллов формируются рифовые сооружения. Они представляют собой известко-вистые образования, мощность которых подчас достигает несколько сот метров, а площадь — сотен квадратных километров. К осадочным отложениям относятся и хе-м огенные породы. Они образуются в результате накопления в водоемах различных солей и последующего выпадения их из раствора. Так появляются карбонатные породы, состоящие полностью из кальцита или доломита, Подобным же образом формируются толщи каменной соли, гипса и т. д. [c.10]

    Помимо упомянутых основных типов осадочных пород, на дне морей и океанов, при определенных условиях, отлагаются и некоторые другие образования. К их числу относятся различные соли — гипс и ангидрит aS04, каменная соль Na l, сильвинит КС1 и т. д. [c.33]

    Мицубиси Хэви Индастриз разработала несколько отличающийся процесс с использованием активированного оксида марганца — ОАР-Мп [41, 533] (рис. 111-46), где регенерация абсорбента производится при взаимодействии сульфата марганца с аммиаком в присутствии воздуха с образованием сульфата аммония. Окисление и последующую регенерацию ведут при комнатной температуре, а активированный оксид МП2О3 отфильтровывают из раствора. Раствор сульфата аммония подается в кристаллизатор, где сульфат выпадает в осадок. Если предпочтительнее рекуперировать сульфат в виде гипса, то к раствору сульфата аммония добавляют известь. В этом случае аммиак выделяют из раствора при нагревании после того, как гипс отфильтровывают на центрифуге. [c.174]

    Понятия гомогенности и гетерогенности нужно отличать от понятий гомофазности и гетерофазности. Так, например, реакция нейтрализации водного раствора щелочи раствором кислоты является гомогенным гомофазным процессом. Реакция взаимодействия газообразных H I и NHg с образованием кристалликов (дыма) NH4 I относится к гомогенно-гетерофазным процессам. Процесс образования гипса по реакции [c.310]

    При затворении цемента водой она быстро насыщается Са304/ который вступает в реакцию с алюминатом и алюмоферритом кальция. Сначала образуется АР -фаза. На следующих стадиях, по мере израсходования сульфата кальция, начинается образование АРт-фазы. При этом уже образовавшаяся АР/-фаза также может переходить в АРт-фазу. Кинетика этих процессов зависит от содержания алюминатов, алюмоферритов и гипса в портландцементе. [c.97]

    Строительный и высокопрочный гипс — быстросхватывающиеся и быстротвердеющие вяжуш,ие веш,ества. Гипсовое тесто схватывается обычно за 15 мин, а конечную прочность приобретает за несколько часов. Затвердевание гипсовой суспензии происходит в результате присоединения воды к полугидрату с вторичным образованием двугпдрата сульфата кальция [c.145]

    Искусственный камень образован переплетением микроскопических кристаллов двуводного гипса, имеюших форму игл. Вслсдст-пие сравнительно высокой растворимости сульфата кальция затвердевший гипсовый камень размягчается в воде и поэтому гипс относится к воздушным вяжущим веществам. [c.145]

    Образование кристаллогидратов и процесс гидратации. Образование крис таллогидратов путем непосредственной гидратации безводных (или менее гидра тированных) солей играет большую роль в процессах твердения вяжущих строи тельных материалов (гипса, портландцемента и др.). Так как у всех кристалле гидратов с повышением температуры более устойчивыми становятся менее гидра тированные или безводные формы, то именно эти формы образуются при получении вяжущего материала в условиях высокой температуры обжига. При обычных же температурах такой продукт, присоединяя воду, переходит в более гидратированную форму. Гидратация может происходить в общем случае при взаимодействии с жидкой водой или с водным раствором какого-нибудь вещества или с водяным паром. При этом раствор не должен быть слишком концентрированным, чтобы давление насыщенного водяного пара над ним было выше давления диссоциации получаемого кристаллогидрата, а для гидратации паром давление его тоже должно быть выше давления диссоциации. [c.19]

    Если бы активная минеральная добавка не входила в состав вяжущего вещества, т. е. если гипс был бы смешан с одним только портландцементом и водой, то при твердении получился бы неустойчивый материал, деформирующийся и даже разрушающийся через несколько месяцев. Такое проведение твердеющей смеси гипса с цементом объясняется образованием высокосульфатной формы гидросульфоалюмината кальция  [c.199]

    Образование твердых тел типа цементных бетонов и других строительных материалов с использованием минеральных вяжущих веществ — цемента, извести, гипса — происходит путем кристаллизационного структурообразования на основе первоначальной коагуляционной структуры в концентрированных суспензиях — дисперсных смесях из порошка цемента и инертного заполнителя с водой. Коагуляционные структуры образуются сцеплением частичек твердой фазы через тонкие остаточные прослойки жидкой дисперсионной среды. Поэтому прочность таких структур, обусловленная весьма слабыми вандерваальсовыми взаимодействиями, очень мала по сравнению с прочностью конечной кристаллизационной структуры — плотного поликристаллического сростка, который образуется непосредственным -срастанием друг с другом кристалликов гидратных новообразований, выделяющихся из пересыщенного водного раствора. [c.184]


Смотреть страницы где упоминается термин Гипс образование: [c.104]    [c.207]    [c.101]    [c.101]    [c.388]    [c.96]    [c.114]    [c.95]    [c.115]    [c.465]    [c.241]    [c.253]    [c.186]    [c.191]   
Смотреть главы в:

Лабораторные работы по неорганической химии -> Гипс образование




ПОИСК





Смотрите так же термины и статьи:

Гипс Сульфат кальция температура образования

Твердение цементного камня. Твердение гипса и других вяжущих. Производство бетона. Производство изделий с применением других вяжущих. Экономический эффект Уменьшение образования накипи и других инкрустаций



© 2025 chem21.info Реклама на сайте