Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции в электрической дуге

    Одним из методов достижения высоких температур, необходимых для инициирования реакций, является использование электрической дуги. Быстрота п легкость достижения высоких температур при относительно небольшом количестве вводимой теплоты (а это, как мы уже отмечали, весьма важно для калориметрии) делает электрическую дугу удобным, а зачастую и единственно возможным средством инициирования реакций. Электрическая дуга может обеспечить такую температуру (2000—2500°), которая другими средствами в калориметрии недостижима. Конечно, использовать ее можно и тогда, когда для инициирования реакций достаточна и более низкая температура (700—2000°). [c.157]


    Электрокрекинг заключается в быстром пропускании углеводородов через электрическую дугу, с помощью которой получают высокую температуру в зоне реакции. Электрическая дуга создается постоянным током напряжением 7000—8000 В. Такая электрическая печь (рис. 13.7) имеет мощность по метану 2800 м /ч, что дает производительность по ацетилену 15 т/сут. Производство ацетилена электрокрекингом обходится дешевле, чем карбидным методом. [c.259]

    Электрокрекинг. Крекинг метана с целью получения ацетилена (быстрое нагревание до 1400—1600 °С и быстрое охлаждение продуктов реакции) можно легко осуществить, если пропускать ме ан через электрическую дугу. [c.110]

    Синильную кислоту можно синтезировать из элементов, проводя реакцию в электрической дуге (процесс сильно эндотермичен) [c.224]

    При электрическом нагревании (рис. 1Х-14, д) тепло, необходимое для проведения реакции, может переноситься реакционной массой непосредственно от дуги. При таком способе нагревания газы проходят через электрическую дугу, образовавшуюся между электродами. Эта система нагревания довольно дорогая и используется только в особых случаях. [c.362]

    Ацетилен при обычной температуре очень неустойчив. Поскольку он является весьма эндотермическим соединением, его нестойкость уменьшается с повышением температуры. Хотя ацетилен и образуется из углерода и водорода в электрической дуге, его следует считать неустойчивым в отношении распада на элементы при всех температурах, так как при температуре, для которой изменение свободной энергии реакции [c.271]

    Пиролизу подвергали либо смесь метана с этаном, получаемую с установок гидрирования угля, либо метан из ближайшего источника природного газа. Реакцию проводили в охлаждаемой водой стальной трубе длиной 100 см и внутренним диаметром 9,5 см. Электроды были медными. Электрод, к которому подводилось высокое напряжение, находился в головной расширенной части реактора. Второй электрод, который был заземлен. Представлял собой медную прокладку в верхней части стальной трубы. Подвергавшиеся пиролизу газы входили в расширенную часть реактора, где они приобретали очень быстрое вихревое движение. После этого газы проходили через электрическую дугу и далее вдоль стальной трубы. Максимальная скорость газов в трубе составляла свыше 665 м. сек. Дуга постоянного тока работала под напряжением 7000 в при силе тока 1000 а мощность дуги при подаче газа 2800 л( /час равнялась 7000 кет. Наивысшая температура реаги  [c.275]


    Существует значительное число вариантов осуществления электродугового процесса. Электрическую дугу можно создавать не только в газовой фазе, но и под поверхностью жидкого углеводорода, например газойля или керосина. В последнем случае газообразные продукты реакции, приходя в соприкосновение с холодной жидкостью, моментально охлаждаются. Среди других методов проведения электродугового процесса с жидкими углеводородами следует указать на разбрызгивание жидкого нефтепродукта в зоне горения дуги или на охлаждение газообразных продуктов реакции пропусканием холодного свежего масла через полые электроды. Во всех случаях получают сложную смесь газов, несколько напоминающую по своему составу смеси, данные анализов которых приведены в табл. 57. Во всех этих процессах, как указывает Хаше 1], расход энергии на 1 т ацетилена колеблется от 9270 до И 950 квт-ч. Этот расход относится, по-видимому, исключительно к потреблению энергии электрической дугой без учета последующего концентрирования ацетилена. [c.277]

    Реакцию (1) проводят при температуре электрической дуги, пропуская через нее метан и азот [3]. Реагирующие вещества могут быть разбавлены инертными газами. В случае, когда исходная смесь состояла из 8,3% метана, 42,7% азота, 33,7% водорода и 5,3% окиси углерода, расход электроэнергии на 1 кг цианистого водорода был равен 19,8—22,0 квт-ч. Этот процесс можно объединить с электродуговым процессом получения ацетилена. Действительно, когда углеводородные газы, являющиеся сырьем для производства ацетилена, содержат даже следы азота, в продуктах реакции, кроме ацетилена, всегда присутствует заметное количество цианистого водорода (гл. 15, стр. 276). [c.376]

    С промышленной точки зрения метан является более перспективным исходным материалом для синтеза цианистого водорода, чем ацетилен. Реакции (1) и (2) весьма эндотермичны, и в случае применения обычного трубчатого реактора интенсивный подвод большого количества тепла для поддержания температуры 1500° представляет в промышленных условиях очень значительные трудности. Выше упоминалось о проведении реакции в электрической дуге как об одном из решений этой проблемы. Вторым решением является сожжение части реагирующих газов внутри реактора. Последний способ был применен при осуществлении реакции (2) и используется сейчас при промышленном производстве цианистого водорода из нефтяного сырья. Этот метод разработан в начале тридцатых годов Андрус-совым [6], который пропускал при 1000° над платиновым катализатором смесь аммиака, кислорода и метана, полученного гидрированием угля или из коксовых газов. В смеси должно находиться достаточное количество кислорода, чтобы могла протекать реакция [c.376]

    Представляет интерес также образование ацетилена из водорода и углерода при высоких температурах, происходящее, по Бертло, в пламени электрической дуги между угольными электродами в атмосфере водорода. При этом выход ацетилена может достигать 8% от количества водорода, находящегося в сфере реакции. [c.78]

    Теоретический интерес представляет прямой синтез синильной кислоты из элементов (водорода и азота) в пламени электрической дуги между угольными электродами. Однако для этой реакции необходима очень высокая температура — выше 1800°. [c.231]

    Разложение природного газа (СН,) в плазме электрической дуги протекает при 1100°С по реакции  [c.65]

    Связанный азот можно получать прямым окислением азота в плазма электрической дуги при 3000—4000 °С по реакции  [c.110]

    Плазма, созданная в различных средах (водороде, азоте, кислороде, благородных газах и др.), позволяет реализовать такие эндотермические реакции, которые в обычных условиях протекают медленно или даже не могут идти по термодинамическим причинам. Так, в кислородной плазме синтезируют оксид азота при получении азотной кислоты, в водородной плазме восстанавливают металлы из руд, в плазме электрической дуги получают ацетилен и технический водород из природного газа, непредельные углеводороды — из бензина и т. д. [c.42]

    Далее путем беседы с учащимися выясняют различные способы связывания свободного азота, вспоминают процессы, происходящие при этом. После этого учащиеся на левой стороне развернутого листа начинают чертить схему, как это показано в кадре 3, а на правой стороне под цифрой 1 записывают уравнения соответствующих химических реакций (кадр 4). Таким путем ежегодно вносится в почву до 15 кг связанного азота на 1 та. В этот процесс активно включена деятельность людей. Например, в технике эти процессы осуществляют в виде сжигания азота в пламени электрической дуги. При электрическом разряде происходит образование оксида азота (II), который согласно уже записанным ранее уравнениям реакций превращается в искусственную кальциевую селитру, используемую как удобрение. Учитель демонстрирует опыт получения оксида азота (И) и его индикацию. [c.126]


    В пламени электрической дуги азот и кислород воздуха взаимодействуют, образуя оксид азота (II). При этом на каждый моль оксида поглощается 102,1 кДж тепла. Напишите уравнение реакции и определите, как смещается равновесие при изменениях температуры и давления. [c.19]

    Ni и 02 при 298 н 4000 К (7 кДж) мало отличается от этой величины для продукта реакции N0 (5 кДж), следовательно, расход теплоты на синтез N0 при температуре электрической дуги (ж 4000 К) лишь на 2 кДж меньше теплоты, затрачиваемой на проведение синтеза при комнатной температуре. [c.179]

    Проводить реакции можно также в электрической дуге. Шихту помещают в графитовый тигель (рис. 20). К тиглю и к электроду подводят электрический ток напряжением 40—60 В н силой 15—20 А. Для создания контакта верхнюю часть элект рода и внешнюю поверхность тигля покрывают медью электрическим способом, а затем обвивают медной лентой или проволокой, к которой и подводят электрический ток. Электрод опускают до соприкосновения с дном тигля, а затем несколько поднимают. В этом случае создается электрическая дуга. Через 3—5 мин ток выключают и после охлаждения вынимают из тигля готовый продукт, который получается в сплавленном виде. [c.53]

    Дуговой метод, заключающийся в проведении очень энергоемкой реакции (N2 + О2 2К0 ЛН° = -1-179,2 кДж) в электрической дуге, был осуществлен впервые в промышленном масштабе в 1902 г., но не получил широкого развития из-за чрезвычайно большого расхода электроэнергии (70 000 кВт ч/т связанного азота). [c.339]

    Пропуская воздух через электрическую дугу, получают моноксид азота. Определить константы равновесия этой реакции, если равновесный выход моноксида азота при 1800° С равен 0,5%, а при 2500° С — 2,5%. [c.39]

    В химии и металлургии используется низкотемпературная плазма. Ее получают в основном двумя способами — дуговым и высокочастотным. В первом пропускают плазмообразующий газ (чаще всего Аг, а также N2, Нг, Не) через электрическую дугу с напряжением на электродах 40—100 Вис достаточно высокой плотностью тока 1 А-см-2. Изменяя состав газовой смеси, можно создавать условия, благоприятные для протекания тех или иных химических реакций. [c.358]

    Существует, однако, теоретическая возможность регенерации теплоты отходящих газов для подогрева воздуха, направляемого на реакцию, поэтому на основе предварительного анализа нельзя полностью дискредитировать метод. Разобранный способ получения N0 в электрической дуге давно не используется в промышленности, но исследования метода, например, при нагревании входящих газов до температуры 2000°С и быстром охла5кдении продуктов в регенераторах по-прежнему проводятся. [c.60]

    Из приведенных данных следует, что реакцию образования окиси азота необходимо проводить при возможно более высокой температуре (температура электрической дуги 3000 К), после чего газы, покидающие реакционное пространство, нужно быстро охладить до Г < 1200 ч- 1300 К. Необходимость проведения процесса таким способом была причиной разработки различных конструкций дуговых печей для синтеза No (см., например, печь Мосцицкого— рис. III-2). Печи подобного типа могут использоваться также для получения ацетилена из алифатических углеводородов (рис. IX-25). [c.375]

    Если для образования S2 требуется нагревание примерно до 800°С, то для получения соединения углерода с азотом 2N2— дициана необходима еще более высокая температура (электрическая дуга). Дициан удобнее получать по реакциям  [c.363]

    Влияние электрической дуги или тихого электрического разряда на алканы являются различными по характеру воздействия (термического и электронно- ионного) формами, перспективными относительно синтеза многих соединений, так как в их условиях реакции крекинга сочетаются с образованием более сложных веществ. Так, при электрокрекин- [c.79]

    К Электрокрекинг, предназначенный, главным образом, для получения ацетилена и лишь частично этилена и других олефинов, впервые подробно изучен и разработан советскими учеными, показавшими его большие практические возможности. Процессы крекинга в электрической дуге не получили широкого промышленного распространения, несмотря на то, что несколько установок были построены и испытаны давно. Так, для производства ацетилена в Германии на заводе в г. Хюлье во время второй мировой войны была сооружена промышленная установка электро-крекинга метана, работавшая при температуре 1600° С и весьма ограниченном времени реакции (10 с). Мощность установки составляла 200 т ацетилена в сутки. Получаемый газ содержал 13,3% по объему ацетилена, 46 — водорода, 8,9 — азота, 2,9 — окиси углерода, 27,8% — парафинов, а также диацетилен, метилацетилен и винилацети-лен. Позднее по результатам исследований, проведенных в Техасском университете, была построена другая установка электрокрекинга в тихом разряде мощностью 7500 т ацетилена в год. В конце пятидесятых годов в Румынии была сооружена установка электрокрекинга метана, на которой выполнено большое число экспериментов. Но из-за сильного сажеобразования эксплуатация этой полузаводской установки затруднена. [c.25]

    Сг. Чем выше температура реакцип, тем меньше образуется метиловых и метиленовых и тем больше метиновых радикалов реакция образования ацетилена постепенно выступает на передний план и в конце концов становится основной (крекииг в электрическо дуге). [c.76]

    При термических способах дробления производится местный нагрев анизотропной среды куска твердого материала. Возникающие при этом внутренние напряжения приводят к разрушению. Зона прогрева, таким образом, выполняет роль своеобразного теплового клина. Источниками тепла для местного нагрева могут быть электрическая дуга, сильно экзотермические реакции сгорания (железа в кислороде, алюминогерми-ческие), высокотемпературные газовые струи из реактивной горелки, высокотемпературная плазменная струя, лазерный луч. [c.702]

    При этой температуре, как видно из рис. (У.14), энтальпия водорода примерно в 8 раз больше энтальпии аргона, а степень диссоциации На на атомы достигает почти 96%. При охлаждении водорода от 5000 до 1700° К, т. е. до температуры, когда реакция (У.61) протекает еще со значительным выходом, 1 тль водорода отдает около 135 ккал. Этого количества теплоты достаточно для нагревания примешиваемого к плазменной струе холодного метана и образования одного моля ацетилена. В этих же условиях из более тяжелых углеводородов образуется до 1,3—1,4 моль С2Н2. Весьма существенно, что в струе водородной плазмы достижимы значительно большие степени превращения метана (и других углеводородов) в ацетилен (80—85%) по сравнению с прямым воздействием электрической дуги на углеводород . Поэтому водород плазмы не снижает концентрацию получаемого ацетилена. [c.152]

    Плазму с температурой, не выше десятков тысяч градусов обычно именуют хо--лодной (в отличие от горячей , отвечающей сотням тысяч и более градусов). Такая холодная плазма, создаваемая в специальных горелках ( плазмотронах ) чаще всего с помощью электрической дуги, перспективна для химии, так как при отвечающие ей температурнцх условиях — 5OOO 4-15 ООО °К — реакции протекают не только очень быстро, но часто в необычных направлениях. Последнее относится прежде всего к сильно эндотермическим процессам (каковым является и синтез NO). [c.427]

    Дуговой метод, заключающийся в проведении очень энергоемкой реакции (N2 + 02a= 2N0 ДЯ° = - -179,2 кДж) в электрической дуге, был осуществлен впервые в промышленном масштабе в 1902 г., но не получил широкого развития из-за чревычайно большого расхода электроэнергии (70 000 кВт-ч/т связанного азота). Этот метод может быть возрожден на основе использования плазменных процессов. [c.254]

    Находит применение не только молекулярный, но и атомный водород (или моноводород). Он получается в момент выделения водорода при химических реакциях, а также при пропускании молекулярного водорода через зону электрического разряда или электрическую дугу. Образующиеся атомы водорода не сразу группируются в молекулы, поэтому удалось изучить свойства атомного водорода. Оказалось, что он более активный восстановитель, чем молекулярный водород, даже при обычных температурах легко восстанавливает металлы из оксидов, соединяется с неметаллами (серой, азотом, фосфором, кислородом). [c.277]


Смотреть страницы где упоминается термин Реакции в электрической дуге: [c.167]    [c.112]    [c.360]    [c.67]    [c.79]    [c.25]    [c.182]    [c.133]    [c.125]    [c.152]    [c.152]    [c.311]    [c.522]    [c.92]    [c.322]    [c.537]    [c.14]    [c.97]   
Смотреть главы в:

Фтор и его соединения Том 1 -> Реакции в электрической дуге




ПОИСК





Смотрите так же термины и статьи:

Электрическая дуга



© 2025 chem21.info Реклама на сайте