Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пример лизоцима

    Лизоцим, как известно [167], не образует протяженных монослоев из-за слабого развертывания молекул, которые имеют очень жесткую регулярную структуру, сшитую четырьмя ди-сульфидными связями. Мономолекулярный слой, полученный из нативного лизоцима, состоит из молекул, форма которых близка к их форме в растворе. Влияние углеводородной фазы на реологические характеристики межфазных адсорбционных слоев изучалось на примере слоев лизоцима на границе с бензолом и пентадеканом. Связывающая способность макромолекул лизоцима в [c.233]


    Поскольку индольная флуоресценция триптофана наиболее интенсивна среди природных аминокислот, она в основном ответственна за флуоресценцию большинства белков и находит различные применения в биологии и медицине, например в качестве пробы для выяснения структурных и конформационных изменений в белках, оценки совместимости антител в иммунологии и выяснения механизма действия ферментов [136, в, 15]. Примером, в частности, может служить гидролаза — лизоцим, содержащий шесть остатков триптофана, в том числе три, по-видимому, ассоциированы с активным участком. Присоединение субстрата приводит к голубому смещению в эмиссионном спектре на 10 нм, от 335 к 325 нм, сопровождающемуся повышением квантового выхода. Такое поведение интерпретируется как указание на взаимодействие между карбоксильными и индольными группами активного центра, которое исчезает при присоединении к субстрату [16]. [c.494]

    Лизоцим был третьим по счету белком и первым ферментом, структура которого была установлена методом рентгеноструктурного анализа при высоком разрешении. В настоящее время аналогичным образов охарактеризованы структуры многих других ферментов, в том числе рибонуклеазы, карбоксипептидазы, папаи-на, химотрипсина и субтилизина. Лизоцим, однако, по-прежнему остается самым ярким примером применения рентгенографии для объяснения характера действия ферментов. [c.258]

    В качестве примера электростатического притяжения между белками, имеющими заряды противоположного знака, мы можем сослаться на результаты, полученные Штейнером , который обнаружил, что лизоцим (изоэлектрическая точка при рН=11) [c.590]

    В литературе имеется множество данных по определению подвижностей и р1 различных белков некоторые из них можно найти в работе [5]. В зависимости от аминокислотного состава и в меньшей степени от структуры изоэлектрическая точка белка обычно лежит в пределах между 10—11 и 4—4,5. Примером кислых белков являются сывороточный альбумин быка, -лакто-глобулин примером основных — лизоцим, цитохром С. [c.63]

    Сверх того, имеется большое количество антибиотиков с установленной суммарной формулой, например актиномицин, и антибиотики неустановленного состава, например лизоцим, присутствующий почти во всех выделениях и тканях млекопитающих, а также в яичном белке и многих растениях и микроорганизмах. Лизоцим сильно действует на ряд бактерий, причем некоторые из них полностью лизируются. В качестве других примеров можно привести такие как стрептотрицин, сильно действующий на микробы чумы и холерный вибрион, и фитонциды—большую группу антибиотиков растительного происхождения. [c.430]


    На примере таких белков, как лизоцим или миоглобин, было показано, что антигенные детерминанты представляют собой выпуклые части молекулы, которые могут входить внутрь активного центра антител. В случае бактериальных клеток в качестве антигенных детерминант часто выступают короткие цепочки из 3—5 остатков сахаров, образующие стенку бактерий. Низкомолекулярные соединения, например некоторые лекарства, сами по себе не могут вызывать образование антител. Их называют гаптенами. Однако после присоединения гаптенов к поверхности той или иной макромолекулы организм начинает вырабатывать на них антитела. Очевидно, что размеры гаптена могут быть меньше объема полости активного центра антитела, в результате чего происходит связывание гаптена только с частью специфических участков активного центра. Тем не менее, как показывает опыт, и в этих случаях антитела являются высокоспецифичными. В качестве примера можно привести структуру молекул двух гормонов — тироксина и тиро-нина [c.102]

    Примеры применения всех этих подходов обсуждаются в гл. 12. Ниже несколько более подробно рассмотрены сериновые протеазы и лизоцим. Эти ферменты сыграли важную роль в развитии обсуждаемых здесь идей и методов и часто упоминаются в данной книге. [c.37]

    Успехи рентгеноструктурного анализа позволили продвинуться вперед в понимании того, как фермент осуществляет свою функцию. В этом отношении особенно ценной оказалась возможность получать снимок молекулы фермента в процессе функционирования, а именно — с включенной в него молекулой субстрата. Структура такого фермент-субстратно- го комплекса впервые была установлена на примере лизоцим ма, и он изображен в несколько упрощенном виде на рис. 16 Молекула субстрата, представляющего собой полисахарид, изображена черной жирной цепочкой, пересекающей фермент сверху вниз (каж ый остаток сахара в цепи рбрэйачед бук- [c.49]

    Рассмотрим лишь один наиболее простой пример ферментативный гидролиз полисахаридов. Распространенг ный фермент животных организмов (лизоцим) специфически расщепляет гликозидные связи -1 — 4-связанных [c.30]

    Лактальбумин [517, 528] и лизоцим [518, 529—531] представляют классический пример двух белков с аналогичными последовательностями, но различными функциями и различными частотами фиксации мутаций. Предположение о структурном подобии обоих белков было впервые выдвинуто в 1958 г. и подтверждено спустя 10 лет [523, 533] путем сравнения аминокислотных последовательностей. Некоторые важные для сопоставления свойства обоих белков приведены в табл. 9.3. Трехмерную структуру бычьего лактальбумина определили, основываясь на структуре лизоцима белка куриного яйца, путем построения Л10дели [534] и последующей минимизации энергии [501, 535]. Эта процедура предполагает идентичность укладки обеих цепей, что представляется достаточно обоснованным, если учесть большое сходство аминокислотных последовательностей обоих белков (табл. 9.3). Этот пример показывает также, каким образом можно использовать данные по одному белку для структурного анализа отдаленно родственных гомологичных белков. [c.215]

    Многие из указанных выше эффектов можно прекрасно проиллюстрировать на примере механизмов связывания и катализа, осуществляемых ферментом лизоцимом. Лизоцим занимает особое место в истории энзимологии, поскольку его трехмерная структура была первой нз структур белков, определенных методом рентгеноструктурного анализа [134]. Это маленький белок, состоящий из одной полипептидной цепи длиной в 129 аминокислотных остатков, катализирует гидролиз гликозидных связей углеводного компонента клеточной стенки бактерий (как часть защитного механизма против бактериальной инфекции). Природным субстратом лизоцима является чередующийся сополимер (86) Л -ацетил-[5-0-мурамовой кислоты (NAM) и Л -ацетил-р-й-глюкоз-амина (NAG), связанных [i-1-> 4-гликозидными связями, однако большая часть работ по изучению механизма была проведена на более простых субстратах. Так, поли-Л -ацетилглюкозамин также гидролизуется ферментом, однако эффективность этой реакции существенно зависит от размера субстрата и трисахарид (NAG)3 фактически является ингибитором лизоцима. Сравнение трехмерных структур фермента и комплекса последнего с (NAG)a показывает, что трисахарид связывается во впадине фермента. Такое сравнение позволяет детально исследовать связывание трех моно-сахаридных звеньев (NAG)a в участках А, В и С фермента, которое осуществляется посредством комбинации гидрофобных рччимодействий и водородных связей. Как отмечалось при об- [c.528]

    Ферменты. Поскольку ферменты имеют белковую природу, 1ри нагревании происходит постоянная их инактивация вслед--твие денатурации белкового носителя. В зависимости от приро-1Ы ферментов инактивация происходит в разной степени. Некоторые примеры изменения активности основных ферментов моло- а приведены в табл. 25. Как видно из приведенных данных, (зиболее термоустойчивым является кислая фосфатаза, а наиме-,ее — липаза. Лизоцим также является ферментом, устойчивым к (згреванию. [c.155]


    В гл. IV мы показали на двух примерах (см. стр. 148), что с помощью сефадекса G-25 можно определить число центров связывания в молекуле фермента, или сродство ферментов к различным реагентам, а также изучить влияние кофакторов на фермент (см. стр. 142). Аналогичным образом, измеряя способность к связыванию восстановленного ДПН, удалось найти эквивалентный вес семи дегидрогеназ (30 000— 40000) [20]. Иногда образуются стабильные комплексы фермента с реагентом, как, например, при действии свободной от цинка карбоксипептидазы на пептидный субстрат [21]. Этот комплекс, который с помощью гель-хроматографии можно отделить от избытка субстрата, уже не активируется ионами цинка. Очистка гель-фильтрацией на сефадексе G-50 является стандартным приемом при определении металла в карбоксипепти-дазе [22]. Лизоцим образует нерастворимый комплекс с продуктом, получающимся при действии этого фермента на- определенный гликопептид. Растворение этого комплекса (в растворе Na l) и последующий анализ с помощью гель-хроматографии на сефадексе (j-75, а затем на G-25 дает информацию о кинетике ферментативной реакции [23]. При добавлении цито-хромоксидазы к избытку цитохрома с и последующем разделении на сефадексе G-200 в некоторых случаях получают высокомолекулярную фракцию, содержащую эквимолярные количества обоих ферментов эта фракция есть по сути не что иное, как часть дыхательной цепи [24]. В некоторые ферменты цикла лимонной кислоты, для которых кофактором служит биотин, удалось ввести метку (С Ог) в результате реакции с соответствующими субстратами с последующей очисткой на сефадексе G-50 это дало возможность после деградации под действием проназы [c.214]

    Пример градиентного элюирования специфическим элюентом приведен на рис. 10.6 нативный лизоцим, специфически сорбированный на три-(М-ацетилглюкозамин) —сефарозе, элюируется концентрационным градиентом три-(Ы-ацетилглюкозамина), различной крутизны [7]. Концентрационный градиент специфически элюирующего реагента всегда задавался после промывки исходным буфером. Количество наносимого на колонку фермента, параметры колонки, состав буфера и другие условия были одинаковыми для трех разбираемых случаев. Отличались только скорости изменения концентрации три-(Ы-ацетилглюкозамнна), как это видно из рисунка. Выходы белка составляли приблизительно 90%. Лизопим [c.267]

    Влияние температуры и длительности термостатирования, количества NaBH4 и числа ступеней восстановления, необходимых для полного завершения реакции -SH с AgNOj, были исследованы на примере бычьего сывороточного альбумина, в молекуле которого содержатся 17 групп -S —S— и 1 группа -SH (мОЛ. масса 69000) [578, 579]. Этот метод успешно использовался для определения групп -SH и в других белках. Полученные результаты хорошо согласуются с литературными данными, исключение составляет лишь белок лизоцим. [c.194]

    Чтобы на основании всего сказанного не создалось впечатления, будто коферменты представляют собой особый род субстратов, отличающийся от остальных какими-то иными свойствами помимо того, что они крайне удобны для изучения фермент-субстратных комплексов, следует отметить, что имеются также и другие убедительные примеры образования этих промежуточных продуктов. Например, сопоставление данных рентгеноструктурного анализа с разрешением 2—3 А для карбокси-пептидазы А и ее комплекса с глицил-Ь-тирозином [38] показывает не только истинное расположение связанного пептида в гидрофобном кармане фермента, но и такие тонкие детали, как сдвиг остатка тирозина на 14 А по направлению к субстрату при образовании комплекса. Впечатляющим примером подобного исследования является рентгеноструктурный анализ лизоци-ма [39], коррелирующий с результатами изучения механизма его действия [40]. Здесь, как и в случае карбокси-пептидазы, структура свободного фермента и его комплекса исследована очень детально. [c.62]

    В настоящее время в ряде лабораторий проводится рентгено-структурпый анализ многих белков. Инсулин, рибонуклеаза, лизоцим и цитохром С являются ближайшими объектами. Методы снятия рентгенограмм, фотометрпрования пятен и методы вычислений поддаются в значительной степени механизации и автоматизации. Можно полагать, что в ближайшие годы рентгеноструктурный анализ даст нам точное знание первичной, вторичной и третичной структуры десятков белков. Тогда эта проблема перейдет в область решенных, т. е. станет проблемой вчерашнего дня. Даже сейчас, когда только что на примерах миоглобина и гемоглобина выработан подробный путь — алгорифм измерений и расчетов — п показан их конечный итог, мы уже можем считать все три уровня строения белка в главных чертах установленными. [c.110]

    Л<с. 4.4. Созданные на компьютере модели третичной структуры лизоцима до и после присоединения субстрата, показывающие, как работает этот фермент. А. Вид сбоку. Активный центр имеет форму щели, проходящей по всей толще молекулы. Б. Вид сбоку. Активный центр с находящейся в нем молекулой субстрата. Обратите внима -ние на некоторое изменение формы фермента, вызванное присоединением субстратй. Это пример индуцированного соответствия , постулированного Кошландом в 1959 г. Субстрат лизоцима представляет собой короткую олигосахаридную цепь, легко умещающуюся в активном центре и расщепляемую ферментом. Такие олигосахариды входят в состав бактериальных клеточных стенок и их разрушение влечет за собой гибель бактерий — клеточные стенки утрачивают присущую им жесткость и клетки лопаются под действием осмотических сил. Лизоцим — широко распространенный фермент, выполняющий защитную функцию он содержится в слезах, слюне и в слизи носовой полости. В. Вид спереди. Активный центр с находящейся в нем молекулой субстрата. Г. Компьютерная модель лизоцима с субстратом в активном центре. [c.156]

    Если при функционировании происходят структурные изменения, прежде всего необходимо выяснить, на каком структурном уровне они осуществляются и какие участки в них вовлечень . Можно подумать, что в случае окси- и дезоксигемоглобина (рис. 1.5) главное структурное изменение, сопровождающее оксигенацию, состоит в перестройке четвертичной структуры, но это не обязательно так. Кислород связывается с группами гема, расположенными вблизи участков контактирования четырех субъединиц белка. Но для того, чтобы произошло изменение четвертичной структуры, свойства остатков на поверхности должны быть как-то изменены. Действительно, когда кислород связывается с гемом гемоглобина, атом железа в геме сдвигается, что вызывает ряд небольших изменений третичной структуры, изменяющих поверхность субъединиц. Эти изменения не менее важны для понимания механизма кооперативного связывания кислорода гемоглобином, чем значительно более заметные изменения четвертичной структуры. Иногда в макромолекуле не происходит структурных перестроек при связывании с ней другой молекулы, но зато последняя претерпевает такие изменения. Прекрасным примером такого рода является связывание гексасахарида с молекулой фермента лизоцима. Как показано на рис. 1.12, один из участков связывания сахара в молекуле лизоцима не способен присоединять сахар в нормальной конформации кресла. Для того чтобы произошло такое связывание, сахарное кольцо должно деформироваться и перейти в форму полукресла, что энергетически не выгодно. Тем не менее этот переход осущестмяется, так как затрата энергии с лихвой компенсируется энергией связывания остальных молекул сахара. Грубо говоря, лизоцим способен использовать энергию связывания, сконцентрировав ее в одной точке углеводного комплекса. Это помогает разрыву связи С—О в одном из сахаров, что является частью механизма каталитического действия фермента. [c.34]

    Ниже будут рассмотрены четыре различных гидролитических фермента (химотрипсин, рибонуклеаза, лизоцим и карбоксипепти-др.за А) их изучение может служить примером использования различных экспериментальных подходов с целью выяснения структурно-функциональных особенностей ферментов. Для каждого из этих ферментов установлена первичная структура, выяснена структура активного центра и механизм связывания субстрата. Кроме того, детально изучены каталитические свойства этих ферментов, и на основе полученных данных предсказан вероятный механизм действия каждого из них. [c.298]

    Часть I посвящена главным образом описанию взаимосвязи между трехмерной структурой и биологической активностью на примере белков. Подробно рассматриваются структура и функция миоглобина и гемоглобина - белков, транспортирующих кислород у позвоночных, поскольку на этом материале можно проиллюстрировать некоторые общие принципы. Гемоглобин представляет особенно большой интерес в связи с тем, что связывание им кислорода регулируется специфическими веществами окружающей среды, Описьгоается также молекулярная патология гемоглобина, в частности серповидноклеточная анемия. В разделе, посвященном ферментам, мы познакомимся с тем, каким образом происходит узнавание субстрата ферментом и как фермент может увеличивать скорость реакции в миллион и более раз. Подробно описываются такие ферменты, как лизоцим, кар-боксипептидаза А и химотрипсин, при изучении которьк были выявлены многие общие принципы катализа. В несколько ином аспекте излагается вопрос о конформации в главе, посвященной двум белкам соединительной ткани-коллагену и эластину. Заключительная глава части I служит введением в проблему биологических мембран, представляющих собой организованные белково-липидные комплексы. На- [c.13]


Смотреть страницы где упоминается термин Пример лизоцима: [c.138]    [c.575]    [c.73]    [c.222]    [c.73]    [c.206]    [c.143]    [c.182]    [c.41]   
Смотреть главы в:

Биофизическая химия Т.1 -> Пример лизоцима




ПОИСК





Смотрите так же термины и статьи:

Лизоцим



© 2024 chem21.info Реклама на сайте