Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплементарные свойства

    Комплементарность, свойство двойной спирали ДНК, согласно которому против А всегда стоит Т и наоборот, а против Г — всегда Ц и наоборот. [c.156]

    Включение комплементарного белка в комплексы антиген— антитело особенно интересно, так как в целом осадки, образованные антигеном с антителом, исключительно чисты и никогда не адсорбируют посторонних (неродственных им) белков из раствора, в котором происходит реакция. Комплементарные свойства сыворотки могут быть устранены различными частицами, и в том числе частицами белка тепловой коагуляции. Однако эти процессы различаются и с качественной, и с количественной стороны. Установлено, что комплемент состоит из нескольких компонентов и те компоненты, которые, избирательно фиксируются агрегатами антиген—антитело, не аналогичны тем, которые адсорбируются другими частицами кроме того, количество агрегата антиген—антитело, необходимое для того, чтобы связать данное количество комплемента, значительно меньше количества любых других частиц. [c.689]


    По современным представлениям, молекула ДНК служит первичной матрицей, или кодом первого порядка, в биосинтезе белка. На ней синтезируется молекула РНК, причем получается определенная последовательность пуриновых и пиримидиновых оснований, соответствующая последовательности нуклеотидов в молекуле ДНК (комплементарное свойство). [c.93]

    Рассмотрим первый случай. Цитозин, входящий в состав изображенного на рис. 2 участка ДНК информационной нити, оказался модифицированным гидроксиламином, что обозначено знаком . Согласно данным Фриза [16] и особенно Филлипса с соавторами [22], такой цитозин комплементарно спаривается с аденином (вместо гуанина). В результате нарушения комплементарных свойств модифицированного цитозина в кодоне, соответствующем этому участку ДНК, произойдет замена Г на А и новый триплет будет иметь состав УУА. Однако новый кодон [c.164]

    В качестве контроля (2-я и 3-я пробирки) учитывают реакцию с заведомо положительной и заведомо отрицательной сыворотками 4-я и 5-я пробирки служат для проверки анти-комплементарных свойств сыворотки и антигена в 6-й и 7-й пробирках контролируется качество комплемента и гемолитической системы. [c.122]

    Чужие белки часто включаются в тело как часть болезнетворных агентов -вирусов, бактерий, грибков, паразитов. Химия тела так сильно зависит от наличия нужных белков в определенном месте, в определенное время и в нужном количестве, что при появлении чужого белка сразу вырабатывается сигнал для нейтрализации возможной опасности. Стратегия защиты организма иммунной системой заключается в синтезе белков, окружающих часть молекулы чужого белка. Опять биохимическое взаимодействие становится возможным из-за соответствия формы молекул антител и антигенов (свойство комплементарности). Если молекула захватчика будет окружена, она не сможет причинить вреда. [c.486]

    Явление экранирования сильно влияет на свойства биополимеров. Так, стабилизацию вторичной структуры ДНК с ростом ионной силы можно объяснить увеличением степени экранирования заряженных фосфатных групп ее комплементарных цепей ионными атмосферами. [c.206]

    Следовательно, наличие в белковой глобуле согласованности всех видов невалентных взаимодействий в условиях компактной, плотной упакованной структуры, т.е. при максимальной насыщенности стабилизирующих внутримолекулярных взаимодействий, является исключительным свойством белков как гетерогенных полимерных макромолекул обычно этим свойством наделены кристаллы только низкомолекулярных соединений. У белков оно было выработано в процессе эволюции путем вариации состава и порядка аминокислот. Дошедшие до нас последовательности белков свертываются в физиологических условиях таким образом, что в конечном счете все остатки приобретают те конформации из присущих им наборов низкоэнергетических форм, которые в глобуле оказываются наиболее комплементарными друг другу. Благодаря этому происходит резкая энергетическая дифференциация конформационных состояний, практически равноценных для свободных монопептидов, и выделение из огромного количества структурных вариантов уникальной нативной конформации белковой молекулы. [c.192]


    Концепция об определяющей роли когезионного (или внутреннего) давления полезна только при изучении реакций между нейтральными неполярными молекулами в неполярных растворителях, поскольку в таких случаях можно пренебречь другими свойствами растворителей, в том числе их сольватирующей способностью и полярностью. В реакциях между биполярными молекулами или ионами растворитель взаимодействует с реагентами и активированным комплексом за счет неспецифической и специфической сольватации настолько эффективно, что вклад когезионного давления [см. уравнение (5.81)] в InA становится очень небольшим. Следует подчеркнуть, что когезионное, или внутреннее, давление не является мерой полярности растворителя. Полярность отражает способность растворителя взаимодействовать с растворенным веществом, в то время как когезионное давление, будучи характеристикой структуры растворителя, служит мерой количества энергии, необходимой для создания в данном растворителе полостей, способных вместить молекулы растворенного вещества. Таким образом, полярность и когезионное давление — это комплементарные параметры и скорость реакции зависит от каждого из них [27, 232]. Влияние полярности растворителя на скорость реакций обсуждается в последующих разделах. [c.281]

    Однако образовать комплементарные пары могут не только нуклеотиды ДНК и РНК в отдельности, но и нуклеотиды ДНК с нуклеотидами РНК. Это свойство лежит в основе переноса генетической информации в процессе биосинтеза белка (транскрипция). Нуклеотиды ДНК образуют следующие пары с нуклеотидами РНК  [c.44]

    Специфичность ферментов. Ферменты обладают высокой специфичностью действия. Это свойство часто существенно отличает их от неорганических катализаторов. Так, мелкоизмельченные платина и палладий могут катализировать восстановление (с участием молекулярного водорода) десятков тысяч химических соединений различной структуры. Высокая специфичность ферментов обусловлена, как было отмечено, конфор-мационной и электростатической комплементарностью между молекулами субстрата и фермента и уникальной структурной организацией активного центра, обеспечивающими узнавание , высокое сродство и избирательность протекания одной какой-либо реакции из тысячи других химических реакций, осуществляющихся одновременно в живых клетках. [c.142]

    Очевидно, что в двойной спирали структура комплементарной пары оснований не может определяться исключительно ее свойствами в изолированном состоянии. Наряду с горизонтальными взаимодействиями в паре существуют и вертикальные взаимодействия соседних неспаренных оснований (см. далее). Стабилизуется структура, оптимальная для двойной спирали как целостной системы. Вместе с тем возможность образования водородных связей между различными атомами, по-видимому, существенна для мутагенеза (см. 9.9). [c.503]

    Этот подход имеет два преимушества 1) не нужно в точности знать, какую роль играет тот или иной аминокислотный остаток в функционировании белка 2) поскольку в данном сайте происходят разные аминокислотные замены, могут случайно синтезироваться белки с разнообразными интересными и полезными свойствами. Конечно, если ни один из образующихся белков не обладает нужными свойствами, приходится все начинать сначала, синтезировав новый набор вырожденных праймеров, комплементарных другой области гена. [c.163]

    Некоторые сыворотки, особенно от иммунизированных животных, обладают антикомплементарными свойствами, т.е. способностью связывать комплемент в отсутствии гомологичного АГ. Антикомплементарность сывороток устраняют путем обработки их углекислым газом, прогреванием, замораживанием и другими методами. Для предотвращения анти-комплементарности сывороток их хранят в лиофилизированном виде или замороженном состоянии при низких температурах. [c.71]

    Вывод из этого состоит в то.м, что положение н момент являются комплементарными свойствами частицы. Это означает, что в данный момент только одкн из них может быть известен с заданной точностью. Более определенно положение — менее определенен. момент, и наоборот. Существенная особенность природы именно в ТО.М II состоит, что, еслп одно нз этпх свойств известно, другое должно оставаться неизвестным. В классической физике ошибочно предполагалось, что оба свойства могут быть известны одновременно. [c.439]

Рис. 30-5. Некоторые химические агенты, способные изменять структуру пуриновых или пиримидиновых оснований ДНК. Такие соединения называются мутагенами, поскольку последствия их действия, если они не исправлены, могут вызвать постоянные наследуемые изменения. А. Наиболее активный дезаминирующий агент-азотистая кислота, которая может образовываться из различных предшественников. Б. Алкилирующие агенты воздействуют на основания, осуществляя перенос алкильной группы на реакционноспособный атом кислорода или азота и изменяя тем самым комплементарные свойства основания. В. Аналоги оснований вызывают мутации, замещая нормальные основания в процессе синтеза ДНК, что приводит к неправильному спариванию оснований. Токсичные или аномальные группы показаны красным цветом. Рис. 30-5. Некоторые химические агенты, способные изменять структуру пуриновых или <a href="/info/84043">пиримидиновых оснований</a> ДНК. Такие соединения называются мутагенами, поскольку последствия их <a href="/info/25048">действия</a>, если они не исправлены, могут вызвать постоянные наследуемые изменения. А. Наиболее активный дезаминирующий агент-<a href="/info/1753">азотистая кислота</a>, которая может образовываться из различных предшественников. Б. <a href="/info/97047">Алкилирующие агенты</a> воздействуют на основания, осуществляя перенос <a href="/info/131485">алкильной группы</a> на реакционноспособный <a href="/info/198230">атом кислорода</a> или <a href="/info/197967">азота</a> и изменяя тем самым комплементарные свойства основания. В. <a href="/info/1386269">Аналоги оснований</a> вызывают мутации, замещая <a href="/info/829593">нормальные основания</a> в <a href="/info/1617156">процессе синтеза</a> ДНК, что приводит к неправильному <a href="/info/103718">спариванию оснований</a>. Токсичные или аномальные группы показаны красным цветом.

    Высокоорганизованные структуры возникают в том случае, когда растворитель обладает выраженными донорными или акцепторными свойствами, т.е. молекулы растворителя вовлекаются в допорно-акцепторное взаимодействие друг с другом. Это особенно характерно для растворителей, молекулы которых содержат кислые атомы водорода. Такие растворители отличаются наличием водородных связей, их называют протонными в противоположность апротонным растворителям. Протонные растворители не могут действовать как доноры или акцепторы, если не разорваны связи между молекулами растворителя, а степень разрыва связей зависит в свою очередь от донорной или акцепторной силы растворенного вещества. Следовательно, химические координирующие свойства протонных растворителей не постоянны, а являются функцией комплементарных свойств растворенного вещества. Отмечая, что Sb l5 более сильный акцептор, чем HgOD или К , точно так же, как Е1з 0 более сильный донор, чем С1 и модельные субстраты для шкалы величин Ej и Z, можно сделать очевидный вывод, что допорные и акцепторные числа для структурированных растворителей должны быть выше, чем это можно предсказать по другим индексам частицы с низкой полярностью очень слабо сольватируются в высокоструктурированных растворителях. [c.172]

    Наиболее важным и изученным свойством комплемента является участие его в реакции гемолиза эритроцитов (антигена) соответствующей гемолитической сывороткой (антителом). Эритроциты, обработанные такой сывороткой, гемолизируются только при наличии свободного комплемента. Другим важным свойством комплемента является то, что он способен фиксироваться (связываться) в процессе многих реакций антиген—-антитело. Таким образом, гемолизирующие свойства сыворотки можно подавить большинством антител, взаимодействующих с антигенами, или ранее образованным осадком антитела с антигеном. Фиксация комплел1ента связана с включением белка в комплекс антиген—антитело, и, вероятно, этот белок и является тем субстратом, который обладает комплементарными свойствами. [c.688]

    В случае если конформационно лабилен фермент, а субстрат обладает относительно жесткой структурой, схема реакции та же, что и для теории индуцированного соответствия [схема (3)]. Наиболее стабильное состояние фермента не имеет оптимального соответствия субстрату, но зато по комплементарным свойствам ближе к переходному состоянию. Чтобы возможнобыло образование комплекса с субстратом, фермент должен претерпеть энергетически неблагоприятную деформацию. Тенденция фермента возвратиться в свое начальное низкоэнергетическое состояние будет обеспечивать, движущую силу перевода субстрата в структуру, близкую к структуре переходного состояния. На рис. 5 приведена схема такого процесса. В данном случае тенденция искаженного фермента Е возвратиться в недеформиро-ванное состояние Е облегчает реакцию, растягивая связи субстрата. Так же как в случае индуцированного соответствия, наблюдаемая энергия связы- [c.232]

    Комплементарность — свойство нуклеотидов образовывать пары по правилу А-Т, С-С за счёт формирования водородных связей между ними в двухиепочечной молекуле ДНК или в гибридной молекуле ДНК/РНК. [c.354]

    Донорно-акцепторное взаимодействие подразумевает комплементарную пространственную упорядоченность центров связывания в доноре и акцепторе. Поэтому в любом синтетическом до-норно-акцепторпом комплексе центры связывания (полярные и дипольные) и стерические барьеры должны быть локализованы определенным образом, чтобы структуры обоих компоиентов соответствовали друг другу. Свойства существующих в природе акцепторов, мицелл и циклодекстринов рассмотрены в следующих разделах данной главы. Простетические группы гемоглобина, хлорофилла или витамина В12 также принадлежат к этой категории, поскольку селективно связывают ионы железа, магния и кобальта. [c.267]

    Далънодействующая хгшическая связь условно может быть разделена на два типа универсальную межмолекулярную связь и специфическую межмолеку-лярную связь. Универсальная связь проявляется при взаимодействии между любыми молекулами, а специфическая — между теми, у которых имеются соответствующие друг другу участки. Такие молекулы, которые соответствуют друг другу как к каждому замку должен быть свой ключ , называются комплементарными. Подробнее с проявлениями различных видов химической связи мы познакомимся ниже при обсуждении конкретных вопросов строения и свойств вещества. Примеры некоторых видов химической связи в изложенной классификации приведены на рис. 4.14. [c.115]

    Механизм передачи ДНК из клетки в клетку состоит в том, что специальный белок узнает определенную последовательность, имеющуюся у трансмиссивных и мобилизуемых плазмид и называемую ориджином переноса, вносит в эту последовательность одноцепочечный разрыв и ковалентно связывается с его 5 -концом. Затем цепь ДНК, с которой связан белок, переносится в клетку-реципиент, а неразорванная комплементарная цепь остается в клетке-доноре. Весь этот процесс осуществляют белки, кодируемые га-генами трансмиссивной плазмиды, в частности один из этих генов кодирует специальную хеликазу, которая в АТР-зависимой реакции разделяет переносимую в реципиент и остающуюся в доноре цепи ДНК. Клеточный аппарат синтеза ДНК достраивает одиночные цепи и в доноре и в реципиенте до дуплексов. Белок, сидящий на 5 -конце перенесенной цепи, видимо, способствует замыканию плазмиды в реципиентной клетке в кольцо (таким образо.м, этот белок напоминает по свойствам топоизомеразы 1-го типа и родственные ферменты, например А-белок фага ФХ174 см. гл. ХП1/. [c.111]

    Многие вирусы имеют геном в виде (—)нитн РНК. У некоторых таких вирусов геном представлен единой непрерывной молекулой, а у других он сегментирован, т. е. состоит из нескольких молекул. Общим свойством вирусов с (—)РНК-геномом является то, что в состав их вирусных частиц входит РНК-полимераза, способная копировать РНК-матрицу. Биологический смысл такой организации понятен. Поскольку, по определению, (—)РНК не может выполнять функции мРНК, для образования своих мРНК вирус должен внести в клетку не только геном, но и фермент, умеющий снимать с этого генома комплементарные копии. Другое общее свойство этих вирусов заключается в том, что матрицей для репликации / транскрипции является не свободная РНК, а вирусный рибонуклеопротеид (РНП) — молекула РНК, равномерно покрытая вирус-специфическим белком. [c.323]

    ДНК-зонды применяют для поиска родственных генов в реакциях гибридизацрш с РНК — для выявления экспрессии данного гена в различных клетках. Для вьывления молекул нуклеиновых кислот, комплементарных всему зонду (или его участку), ДНК-зонды часто сочетают с методом гель-электрофореза, что позволяет получать информацию о размерах гибридизируемых молекул ДНК. Эффективное использование современных приборов, способных автоматически синтезировать любые нуклеотидные последовательности за короткий промежуток времени, дало возможность перестраивать гены, что представляет собой один из важных аспектов генной инженерии. Обмен генами, а также введение в клетку гена другого вида организма осуществляют посредством генетической рекомбинации in vitro. Этот подход был разработан на бактериях, в частности на Е. соИ. Он основан на важном свойстве ДНК — способности к перестройкам, изменяющим комбинацию генов в геноме и их экспрессию. Такая уникальная способность ДНК позволяет приспосабливаться данному виду к изменяющейся среде. Генетическую рекомбинацию подразделяют на два больших класса общую рекомбинацию и сайт-специфическую рекомбинацию. В процессе общей рекомбинации генетический обмен в ДНК происходит между гомологичными нуклеотидными последовательностями, например между двумя копиями одной и той же хромосомы в процессе мейоза (кроссинговера), или при скрещивании и перегруппировке генов у бактерий. [c.112]

    Динамическая структура белковых макромолекул ферментов, постулированная Р. Ламри, К.Х. Линдерштром-Лангом и Д.Е. Кошландом, проявляется в локальной тепловой подвижности отдельных участков и в способности к индуцированным конформационным переходам. Ограниченная внутримолекулярная подвижность белков И1рает первостепенную роль в реализации таких функционально важных свойств ферментов, как динамическая адаптация формы фермента к структуре каталитических и субстратных групп, меняющаяся в процессе химической реакции, аллостерическое взаимодействие между пространственно разобщенными центрами, реализация принципа комплементарности свободных энергий и индуцированного соответствия. [c.552]

    Большое количество полученных в последние годы экспериментальных данных свидетельствует в пользу гетерогенности рецепторов АТ II, и в дальнейшем изложении будем исходить именно из этого предположения [379-382]. Полифункциональность АТ II и гетерогенность его рецепторов можно связать с молекулярной структурной организацией гормона, изученной теоретически. Его предрасположенность к реализации ряда функций проявляется в существовании в нативных условиях нескольких близких по энергии и легко переходящих друг в друга пространственных форм. Высокая эффективность и строгая избирательность взаимодействий АТ II с различными рецепторами связаны с тем, что каждая его функция реализуется посредством актуальной только для данного рецептора конформации из состава самых предпочтительных структур свободной молекулы. Таким образом, поиск структурно-функциональной организации АТ II сводится к выяснению для каждой биологической активности пептида актуальной конформации. Для решения задачи в условиях отсутствия необходимых данных о потенциальных поверхностях мест связывания требуется использование дополнительной информации. В качестве такой информации, как правило, привлекаются данные по биологической активности синтетических аналогов природных пептидов. Однако при формировании серии аналогов без предварительного изучения конформационных возможностей как природного пептида, так и его искусственных аналогов в ходе исследования по существу случайным образом ищется прямая зависимость между отдельными остатками аминокислотной последовательности гормона и его функциями. Поскольку стимулированные гормоном аллостери-ческие эффекты возникают в результате не точечных, а множественных контактов между комплементарными друг другу потенциальными поверхностями лиганда и рецептора (иначе отсутствовала бы избирательность гормональных действий), нарушение функции при замене даже одного остатка может быть следствием ряда причин. К ним относятся исчезновение нужной функциональной группы, потеря необходимых динамических свойств актуальной конформации, запрещение последней из-за возникающих при замене остатков стерических напряжений, смещение конформационного равновесия из-за изменившихся условий взаимодействия с окружением и т.д. Следовательно, случайная замена отдельных остатков не приводит к решению задачи структурно-функциональной организации гормонов. Об этом свидетельствует отсутствие в течение нескольких десятков лет заметного прогресса в ведущихся с привлечением множества синтетических аналогов исследованиях зависимости между структурой и функцией АТ II, энкефалинов и эндорфинов, брадикининпотенцирующих пептидов, а также ряда других. Отсюда следует неизбежный вывод о необходимости привлечения к изучению структурно-функциональных отношений у пептидных гормонов специального подхода, который позволил бы отойти от метода проб и ошибок и при поиске синтетических аналогов делать сознательный выбор для их синтеза и биологических испытаний. [c.567]

    Молекулярная биология занимает -особое место в развитии науки второй половины XX в. Именно ее рождение и последующий бурный рост выдвинули биологию в целом в ряды самых передовых и популярных наук, а XX в. стали иногда называть веком биологии . Возникнув как отрасль биохимии, молекулярная биология получила мощное развитие благодаря внедрению в нее вдей и методов генетики и физики. Открытый и сформулированный в 1953 г. принцип комплементарности в нуклеиновых кислотах, объяснив особенности структуры этих макромолекуляр-ных соединений и обладая предсказательной силой в отношении их функций, лег в основу нового направления науки. Огромное научное и методологическое значение молекулярной биологии состояло в том, что наиболее фундаментальное и таинственное свойство живой материи — воспроизведение себе подобного — оказалось возможным объяснить на молекулярном уровне. Молекулярная структура вещества, в котором записана (закодирована) генетическая информация, механизмы воспроизведения генетической информации в поколениях клеток и организмов и механизмы реализации генетической информации через биосинтез белков —вот три направления, по которым развивалась эта наука и где были сделаны решающие успехи. Кроме того, структура и механизмы функционирования белков стали также предметом молекулярной биологии. [c.3]

    М-Фторамины и их аналоги, несомненно, принадлежат к самому представительному классу переносчиков фтора - по числу известных объектов, глубине и степени их изученности, широте применения, что всегда позволяет синтетику выбрать реагент, комплементарным фторируемому субстрату по совокупности химических и физических свойств [1-6]. [c.57]

    Вырезание интрона происходит очень точно это обеспечивается наличием сложной вторичной и третичной структуры РНК. Нуклеотидная последовательность интрона с учетом комплементарных взаимодействий отдельных участков может быть представлена в виде достаточно сложной структуры (рис. 99). Сходную структуру имеет интрон предшественника рРНК митохондрии. Замены отдельных нуклеотидов в составе интрона обнаруживают необходимость отдельных элементов его структуры для самосплайсинга. Например, нарушение комплементарности в районе А препятствует сплайсингу. Оказывается, что для правильного сплайсинга необходимы также комплементарные взаимодействия нуклеотидов (вне плоскости рисунка ) в элементах Б и В. Замена нуклеотида в районе Б, нарушившая комплементарность и сплайсинг, может быть компенсирована другой нуклеотидной заменой в районе В, если она восстановит комплементарные взаимодействия. Каталитические свойства определяются особой структурой РНК, создаваемой в результате комплементарных взаимодействий. [c.167]

    Гурский, Готтих и соавторы предложили код белково-нуклеинового узнавания, определяющий регуляцию транскрипции (1976). Предполагается, что участок регуляторного белка состоит из двух антипараллельных сегментов полипептидной цепи, образующих -структуру. Узнавание основано на комплементарности этой структуры и последовательности нуклеотидных нар ДНК. Важное свойство такой последовательности состоит в асимметричном распределении гуанинов между двумя нитями ДНК. В предлагаемом коде шесть аминокислотных остатков — Сер, Тре, Асп, Гис, Глн, Цис—и их последовательность в сте-реоспецифичном участке белка определяет последовательность пар оснований ДНК, с которой данный белок преимущественно связывается. Код, разработанный на основе стереохимии, подтвержден взаимодействием Лак-репрессора с Лак-опероном и другими примерами. [c.288]

    Для получения гетерологичных рекомбинантных белков с клонированной эукариотической комплементарной ДНК (кДНК) обычно используются прокариотические системы экспрессии. Однако в некоторых случаях эукариотические белки, синтезированные в бактериях, оказываются нестабильными или биологически неактивными. Кроме того, как бы тщательно ни проводилась очистка, конечный продукт может быть загрязнен токсичными веществами или веществами, вызывающими повышение температуры у человека и животных (пирогенами). Чтобы решить эти проблемы, для получения рекомбинантных белков, предназначенных для использования в медицине, были разработаны эукариотические системы экспрессии. Такие белки должны быть идентичны природным по своим биохимическим, физическим и функциональным свойствам. Неспособность прокариот синтезировать аутентичные варианты белков обусловлена в основном отсутствием у них адекватных механизмов внесения специфических посттрансля-ционных модификаций. [c.135]

    Генетический материал любой клетки представлен ДНК, информационные свойства которой определяются специфической последовательностью четырех нуклеотидов в полинуклеотидной цепи. Полуконсервативный механизм репликации ДНК, в результате которого из одной родительской двухцепочной молекулы образуются две дочерние молекулы, содержащие по одной родительской и одной вновь синтезированной комплементарной полинуклеотидной цепи, наилучшим образом обеспечивает идентичность исходной и синтезированных молекул и, следовательно, сохранность видоспецифической наследственной информации в ряду поколений клеток и организмов (см. гл. 4). Частота ошибок, возникающих в процессе репликации, порядка 10 . [c.142]

    Химическая структура нуклеиновых кислот будет описана в 2.3. Здесь же уместно кратко описать основные принципы, заложенные в структуре молекулы ДНК, которые обеспечивают возможность самокопирования ДНК независимо от нуклеотидной последовательности. При делении клетки информацию, заложенную в молекулах ДНК этой клетки в виде определенной последовательности нуклеотидов, необходимо передать двум вновь образованным дочерним клеткам. Поэтому из одной молекулы ДНК перед клеточным делением должно образоваться две с той же нуклеотидной последовательностью. В живых организмах ДНК в период между ее удвоением всегда существует в виде двух связанных друг с другом полинуклеотидных цепей (нитей). Связь эта осуществляется в результате того, что каждый из четырех составляющи. ДНК типов нуклеотидов резко предпочтительно взаимодействует с одним из тре.ч остальных. Поэтому нуклеотидные последовательности этих нитей взаимно однозначно соответствуют друг другу, или, как принято говорить, комплементарны друг другу. Следовательно, каждая цепь содержит информацию о комплементарной нуклеотидной последовательности другой цепи. Будучи разделенными, цепи со.чраняют необходимую информацию для построения из нуклеотидов новы.к комплементарны. цепей и, таким образом, осуществляют воспроизведение информации, заложенной в двуспиральной структуре. Процесс самоудвоения ДНК, т.е. образования двух новых двуни-тиевых молекул ДНК, идентичных первоначальной молекуле, называют репликацией ДНК. Химические события, лежащие в процессе репликации, состоят в последовательном присоединении нуклеотидов друг к другу. Этот процесс в живых организмах осуществляет специальный фермент — ДНК-полимераза. Изучение свойств и механизмов функционирования этого фермента в клетке показало, что он работает только в присутствии материнской двуспиральной ДНК. Цепи материнской ДНК направляют образование новых комплементарных цепей, т.е. на каждой стадии роста новой цепи осуществляют отбор одного из четырех мономеров и присоединения его к растущей цепи. [c.18]

    Молекулярное узнавание является одним из наиболее фундаментальных свойств систем, с которыми имеют дело биохимики, и конкретные примеры комплементарных структур будут неоднократно приводиться в первую очередь при описании структуры нуклеиновых кислот и при рассмотрении механизма ферментативного катализа. Поэтому здесь приведен лишь один умозрительный пример структуры организованной для узнавания аминокислоты Ь-аспарагина. Эта аминокислота имеет несколько групп, которые могут участвовать во взаимодействии с узнающим ее белком,- заряженные амино- и карбоксильную группы и фрагмент СОШг, способный одной своей частью выступать в качестве донора, а другой — в качестве акцептора протона при образовании водородных мостиков. Поэтому [c.77]

    Одно из главных свойств молекулы соединения, обладающего фармакологическим эффектом, заключается в его способности эффективно взаимодействовать с соответствующим рецептором - активным фрагментом протоплазмы клетки. Такое взаимодействие оказывается возможным лишь в том случае, если молекула лекарства и рецептор имеют в своих структурах совместимые фрагменты - так называемые комплементарные участки. Образно говоря, такие участки должны подходить друг к другу как ключ к замку. При этом взаимодействие лекарство-рецептор, как правило, не обусловлено образованием прочных ковалентных связей. Более значимыми в таком взаимодействии оказываются водородные и координационные связи, ван-дер-ваальсовы и электростатические силы. [c.487]

    Важным биологическим свойством ЛПС является его способность взаимодействовать с комплементарной системой. Комплемент включается на ранних стадиях эндотоксического шока, принимает участие в локализованной и генерализованной реакции Шварцмана, в раннем накоплении полиморфно-ядерных лейкоцитов и воспалительном эксудате, вызванном ЛПС. [c.377]


Смотреть страницы где упоминается термин Комплементарные свойства: [c.179]    [c.167]    [c.184]    [c.392]    [c.339]    [c.470]    [c.488]    [c.249]    [c.718]   
Физическая химия. Т.1 (1980) -- [ c.439 ]




ПОИСК







© 2024 chem21.info Реклама на сайте