Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы железа с никелем и молибденом

    Одной из важнейших причин, ограничивающих применение высоких и сверхвысоких температур в химической технике, яв-ляется трудность подбора конструктивных материалов, устойчивых при этих температурах и одновременно к действию различных химических реагентов. Обычные углеродистые стали легко деформируются уже при температурах выше 00 °С, а пластмассы даже при температурах ниже 250 °С. Жаропрочные стали устойчивы при температурах до 700°С. Специальные сплавы железа с никелем, хромом, молибденом, кобальтом, титаном и другими тугоплавкими металлами, применяемые в химической промышленности, устойчивы до 800—900 °С. Для осуществления процессов при температурах выше 900—1000 °С в металлургии, в стекловарении, в производстве цемента, карбидов и многих других применяют неметаллические огнеупорные материалы (см. гл. XV). Наиболее распространенные огнеупоры (шамот, динас и другие) применимы для футеровки аппаратов, кладки печей, топок и т. п. при температурах не более 1400—1600 °С. Применение огнеупоров ограничено также их коррозией при действии расплавленных м-е-таллов и шлаков. При температурах до 2000 °С в основной среде используются магнезитовые огнеупоры. Графитовые изделия стойки в восстановительной среде при температурах до 3000 °С. Отсутствие доступных конструктивных материалов, стойких в различных агрессивных средах при температурах выше 1600—2000°С, является основным препятствием для осуществления многих эндотермических высокотемпературных процессов. [c.146]


    Из технических сплавов известны сплавы титана с железом, медью, алюминием, хромом, марганцем, кобальтом, никелем, молибденом, вольфрамом, ванадием и др. [c.86]

    Добавки металлов к титану по-разному влияют на температуру превращения а->р. К металлам, стабилизирующим а-фазу, относится алюминий. р-Фазу стабилизируют ванадий, ниобий, тантал, молибден. Марганец, железо, никель, медь понижают температуру перехода а-фазы в Р-фазу, но сплавы титана с этими металлами, достигнув определенной, так называемой эвтектоидной температуры, при дальнейшем охлаждении претерпевают превращения, при которых Р-фаза полностью распадается, образуя а-фазу и промежуточную -фазу, обога- [c.86]

    Главными представителями сплавов железа являются чугуны и стали. При анализе простых чугунов и сталей обычно определяют содержание в них углерода, кремния, серы, фосфора и марганца. Для придания сплавам железа определенных технических свойств в них вводят легирующие компоненты, из которых чаще всего приходится определять никель и хром (также ванадий, медь, титан, молибден и др.). [c.454]

    Согласованные спаи металлов с твердыми стеклами. Твердые стекла могут образовывать спаи с вольфрамом, молибденом-, сплавами железа, никеля, кобальта и некоторыми другими металлами (табл. 2-34). [c.116]

    КОБАЛЬТА СПЛАВЫ — сплавы на основе кобальта. Отличаются малым коэфф. термического расширения — (15,9 — 16,5) 10 град в интервале т-р 20—870 С, жаростойкостью, высокой коррозионной стойкостью и особыми магнитными свойствами. Наибольшее применение нашли снлавы кобальта с тяжелыми металлами — железом, хромом, никелем, молибденом, вольфрамом и др. (табл.), нредставляюш,ие собой твердые растворы. Такие снлавы подразделяют на твердые, жаропрочные и магнитные. К твердым относятся сплавы типа стеллит, наплавляемые (для повышения износостойкости и реставрации рабочих органов) на кромки режупц1Х инструментов и детали машин. Стеллиты, содержащие 80% Со и 20% Сг, наз. мягкими (см. также Стеллит, Твердые сплавы). Твердые сплавы, упрочненные карбидными фазами с содержанием до 1% С, способны сохранять св-ва до т-ры [c.597]

    Кобальт обычной чистоты представляет собой недостаточно пластичный металл и поэтому металлический кобальт мало применяют в технике. Однако сплавы на основе кобальта или содержащие заметное его количество, играют важную роль в современной технике. Сплавы на основе кобальта, часто называемые стеллитами, легированы значительным количеством хрома, а также вольфрамом железом, никелем, молибденом и углеродом. Они являются высоко жаропрочными и жаростойкими конструкционными материалами. Высокая прочность и твердость обусловлены тем, что они содержат значительное количество карбидов хрома и вольфрама. Такие сплавы применяют для наварки фасок выхлопных клапанов авиадвигателей, лопаток газовых турбин, матриц, инструментов и некоторых других деталей, работающих одновременно при высоких температурах и механических и истирающих нагрузках. [c.232]


    НОГО окисления не наступает [357]. Рис. 1.И7 дает схему механиЗ" ма реакции. Благоприятное действие молибдена, например для нагревательных элементов на основе железа, предупреждает опасное окисление , если образуется МоОз, имеющий низкую точку плавления (795 С). Добавки никеля или хрома к сплавам железа с молибденом (например, 15% Ni, 20% Мо и 65% Fe или 5% Сг, 20% Мо и 75% Fe) исключают опасное окисление. [c.123]

    Как показал Бреннер [894], добавки хрома или никеля к двойным сплавам железа с молибденом вызывают их катастрофическое окисление в определенных интервалах концентраций, показанных на рис. 114 заштрихованными участками. [c.389]

    Коррозионная стойкость стали может быть повышена путем введения хрома, никеля, молибдена, титана, марганца и некоторых других элементов в различных сочетаниях. Чаще всего встречаются кислотоупорные стали следующих систем железо — хром железо — хром — никель железо — никель — молибден железо — хром — никель — титан железо — хром — никель — марганец и т. д. Эти сплавы принадлежат к нержавеющим сталям. Большинство из них отличается высокой коррозионной устойчивостью в различных агрессивных средах, что объясняется их способностью переходить в пассивное состояние благодаря образованию на поверхности защитных пленок. [c.13]

    Попытки подбора сплавов или материалов, удовлетворяющих перечисленным требованиям, предпринимались давно. Были опробованы сплавы железа с молибденом, кремнием, ванадием и вольфрамом, а также карбид железа, кремний, хром, платина, палладий, никель, кобальт, марганец и тантал [4]. Авторы нащли, что ферросплавы, марганец и тантал не амальгамируются (к сожалению, наблюдения были непродолжительными). Высокая активност > ферросплавов и вольфрама подтверждена в кратковременных опытах, проведенных авторами работы [5]. [c.71]

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]

    Отдельно следует рассмотреть применение молибдена и его сплавов для нужд большой химии. При использовании молибдена для изготовления различных изделий возникают значительные технологические трудности. Некоторой пластичностью молибден обладает лишь в деформированном (ниже температуры рекристаллизации), а следовательно, и в наклепанном состоянии. При сварке в зоне, прилегающей к сварному шву, происходит рекристаллизация и металл полностью охрупчивается. Таким образом, молибден относится к числу несвариваемых металлов. Однако высокая температура плавления и возможность эксплуатации молибдена при температурах 1500-2000°С, когда сплавы железа и никеля переходят уже в жидкое состояние, вызывают необходимость преодолевать эти технологические трудности. [c.86]

    Хороший выход адипиновой кислоты получен при карбонилировании тиофена в присутствии карбонила никеля или гидроокиси никеля и галогена при температуре 280—320 °С и давлении окиси углерода 29,4—31,4 МПа [116]. Учитывая высокую агрессивность среды, для проведения такой реакции предложено использовать реакторы, футерованные серебром, платиной, медью или изготовленные из сплава, содержащего никель, железо, молибден, хром, и футерованные кислотоупорным материалом [117]. [c.96]

    На основе описанных методик с помощью радиоактивных изотопов Мо , Ре , N1 , проведено исследование диффузии и электропереноса обоих компонентов в сплавах системы молибден — вольфрам (всего И сплавов), в сплавах железа, содержащих 2 и 4 ат.% никеля в широких интервалах температур. [c.205]

    Кобальт содержится в рудах, минералах, сплавах, сталях и других промышленных и природных материалах чаще всего вместе с железом, никелем, марганцем, медью, хромом, молибденом, вольфрамом, ванадием и некоторыми другими элементами. Поэтому большое значение имеют методы отделения кобальта от названных элементов. [c.60]

    Среди металлических материалов исключительное полол<ение занимают сплавы на основе железа. Сплавы железа с содержанием углерода до 2% принято называть сталью, а свыше 2% — чугуном. Используемые в настоящее время в промышленности стали обычно делят на углеродистые и легированные. Создание новых н интенсификация существующих промышленных процессов заставляет все больше использовать легированные стали, которые обладают повышенной коррозионной стойкостью. Массовая доля средне- и высоколегированных сталей в настоящее время составляет почти 20% от общего количества производимых промышленностью черных металлов. Для легирования используют такие элементы, как никель, хром, молибден, вольфрам, ванадий, кобальт, марганец, медь, титан, алюминий. Сплавы железа с хромом составляют основу нержавеющих сталей, среди которых [c.136]


    Обычно кислотоустойчивые и нержавеющие стали — это сплавы железа с хромом и легированные в целях улучшения их сопротивляемости молибденом, никелем, титаном, марганцем и другими элементами Содержание углерода в них порядка 0,15% Жаропрочные стали включают железо, хром, никель, их используют для изготовления арматуры печей, муфелей, воздухоподогревателей Вольфрам и молибден используют в качестве легирующих веществ [c.294]

    Сплав железа с углеродом при содержании последнего более 1,7% называют чугуном. Чугун тверд, но хрупок и не поддается ковке или прокатке. Он используется главным образом для отливок тяжелых машинных частей (станин, маховых колес и т. п.) и на переработку его на сталь. Для улучшения свойств чугуна его легируют, что обеспечивает возможность широкого использования его в промышленности. Легирование чугуна и стали обычно проводят хромом, никелем, марганцем, кремнием, молибденом, вольфрамом, ванадием, титаном, алюминием, ниобием, кобальтом, медью, бором, магнием. От качества и количества легирующих элементов зависят свойства чугуна и стали. Требования к химическому составу выпускаемого промышленностью чугуна определяются условиями его назначения. Так, например, жаростойкий чугун должен соответствовать по химическому составу требованиям ГОСТ 7769—63, отливки из ковкого чугуна ГОСТ 1215—59 (табл. 20, 21). [c.270]

    Перитектические сплавы (молибден—алюминий, молибден— кобальт, молибден—железо, молибден—никель, молибден—уран, молибден—цирконий). [c.490]

    Легкоплавкие стекла можно также спаивать со сплавами на основе никеля, железа, хрома и марганца, например с ваковитом. Для впаивания в тугоплавкие стекла применяются молибден, вольфрам и сплавы железо — никель — кобальт, например вакон. Все эти сплавы в виде проволоки, палочек, трубок, пластин, лент, профилей и готовых изделий можно приобрести через торговую сеть. Для очень тугоплавких стекол (пирекс, дюран 50, стекло для химической посуды 20) сплав для впаивания подобрать гораздо труднее. Обычно в этом случае используют молибден или вольфрам либо осуществляют впаивание через промежуточную вставку из другого стекла (например, помещают стекло № 8243 фирмы S hott между сплавом вакон 10 и стеклом для химической посуды 20). Для впаивания в кварцевое стекло подходит лишь молибден. [c.19]

    Отмечая роль различных составляюших, следует учитывать наличие других добавок и их концентрации. Так, например, в сплавах никеля с содержанием молибдена до 30 % никаких признаков ускоренного разъедания не было обнаружено. Но при добавках в двойные сплавы железа с молибденом никеля и хрома при определенных концентрациях возможно ускоренное окисление. [c.148]

    Рассматриваемым методом рений определяют в молибдените и других молибденсодер кащих материалах [1, 5, 13, 19, 21], минералах ]35], медных рудах и концентратах [36], сплавах железа, никеля и марганца [25], углях [20]. [c.322]

    В растворах кипяшпх солей наиболее стойки сплавы алюминия с бериллием, цирконием, титаном, хромом, Сг5лгвы с кремнием, магнием, марганцем показали среднюю стойкость наименее стойкими в этих растворах были сплавы с оловом, висмутом, свинцом, железом, никелем, молибденом и вольфрамом [147], [c.77]

    При одновременном легировании никеля молибденом и хромом получается сплав, стойкий в окислительных средах, благодаря присутствию хрома, и в восстановительных благодаря молибдену. Один из подобных сплавов, содержащий также несколько процентов железа и вольфрама (хастеллой С) устойчив против питтинговой и щелевой коррозии в морской воде (испытания в течение Ю лет) и не тускнеет в морской атмосфере. Однако сплавы такого типа, хотя и обладают повышенной стойкостью к иону С1 , в соляной кислоте корродируют быстрее, чем бесхромистые никелево-молибденовые сплавы. [c.362]

    Восстановительная активность этих металлов растет с уменьшением порядкового номера. Однако, благодаря устойчивой оксидной пленке, только хром является пассивным металлом в широком интервале температур. Молибден и вольфрам начинают окисляться на воздухе при 250—400° С. При 500° С быстро образуется желтого цвета оксид WO3, а при 600°—М0О3. Оксиды летучи (особенно МоОд), пленки их на металлах незащитные. Использование изделий из этих металлов при высокой температуре требует создания водородной или инертной среды. Хром окисляется при нагревании только в виде порошка. Сплавы железа с хромом (и никелем) нержавеющие. Молибден и вольфрам поглощают водород только при 1200° С и выше, а при охлаждении его содержание в металлах уменьшается. Хром с водородом образует неустойчивые гидриды СгН и СгНз, разлагающиеся при нагревании. Эги металлы не реагируют со ртутью и не образуют амальгам. При нагревании с углеродом и углеводородами до 1200— 1400°С образуются карбиды W2 , W , Moj , МоС (являющиеся фазами переменного состава) и различные карбиды хрома. Все три металла образуют силициды, бориды, сульфиды, фосфиды, нитриды различного состава. Нитриды весьма тверды, но не очень химически устойчивы, кар.1иды же в обычных условиях довольно устойчивы. [c.336]

    Этим объясняется широкое развитие И. среди переходных металлов по группам, горизонтальным и диагональным рядам пераодаческой системы элементов. В связи с этим при легировании сталей и чугунов главнейшими металлами являются титан, ванадий, хром, марганец, никель, молибден и вольфрам. В первом приближении период решетки твердых растворов аддитивно связан с периодами решеток компонентов. При несовершенном И. с понижением т-ры может происходить распад твердых растворов с образованием двух- или многофазных систем. Подобное яв-.тоние используют для старения металлов, т. е. получения после закалка дисперсноупрочненных сплавов (см. Дасперсноупрочненные материалы), характеризующихся повышенной твердостью, изменением магн. и электр. св-в. В твердых растворах второго рода атомы компонентов отличаются электронным строением и геометрическими характеристиками. В междоузлия металла внедряются атомы неметалла, не изменяя структуры исходного металла (сплава), что предполагает низкую концентрацию внедренных атомов. Твердые растворы внедрения образуют водород, углерод и азот. Содержание углерода в твердом растворе альфа-железа (см. Железо) — 0,025 ат.%, в гамма-железе — 2,03, в твердом растворе ниобия — 0,02 ат.%. Увеличение концентрации усиливает хим. взаимодействие атомов металла и неметалла, изменяет электронную и кристаллическую структуру, вызывает образование внедрения фазы,. Расчет радиусов междоузлий для гексагональных плотноупакованных, гранецентрированных кубических и объемноцентрированных кубических структур позволил сделать вывод о возможности внедрения атомов при гх/гщ < 0,59, где — радиус атома неметалла — радиус ато- [c.487]

    Кроме сплавов иикетя с железом в качестве магкитомягких используют также сплавы инкеля с железом и коба1ьтом, никеля с железом и фосфором, никеля с железом и молибденом. [c.183]

    Сами металлы и их сплавы чрезвычайно ценны для человека благодаря своим характерным свойствам. Современная цивилизация основана на применении железа и стали, причем ценные сорта стали изготовляют с включением в их состав наряду с железом таких металлов, как ванадий, хром, марганец, кобальт, никель, молибден, вольфрам и др. Значение этих сплавов обусловлено преледе всего их твердостью и прочностью. Столь ценные свойства являются следствием того, что [c.490]

    Черная металлургия, потребляющая около 90% ванадия, использует его легирующие, раскисляющие и карбидообразующие свойства. В специальных сортах сталей он способствует образованию тонкой и равномерной структуры, делает сталь более плотной, повышает вязкость, предел упругости, предел прочности при ргстяжении и изгибе, расширяет интервал закалочных температур. Карбиды ванадия повышают твердость стали, увеличивают сопротивление истиранию и ударным нагрузкам. Ванадий — важная добавка в инструментальной (до 2%) и конструкционной (до 0,2%) сталях, сталях для газопроводов высокого давления. Развитие тяжелого и транспортного машиностроения обязано ванадиево-марганцевой стали, отличающейся большим сопротивлением удару и усталости. Ванадий используется для легирования сталей в комбинации с хромом, никелем, молибденом, вольфрамом. Им легируют также чугун. В машиностроении применяют чугунное литье с присадкой 0,1—0,35% V для изготовления паровых цилиндров, поршневых колец и золотников паровых машин, прокатных валков, матриц для холодной штамповки. Он — компонент сплавов для постоянных магнитов. Вводят в сталь его в виде феррованадия— сплава железа с 35— 80% V. [c.17]

    Теплота хемосорбции кислорода на многих металлах очень велика (табл. 14). Кроме того, при ее определении разные исследователи получили сильно отличающиеся величины некоторые примеры, подтверждающие это, приведены в работе [67], где показано, что максимальные теплоты хемосорбции на титане, тантале, алюминии, ниобии, вольфраме, хроме, молибдене, марганце, железе, никеле и кобальте близки к теплотам образования массивных окислов этих металлов и меняются совершенно линейно с атомным радиусом металла. Теплоты хемосорбцни на родии, палладии и платине почти вдвое превышают теплоты образования стабильных окислов и также обнаруживают линейную зависимость от атомных радиусов. Бортнер и Парравано [72] исследовали теплоты хемосорбции кислорода на серебре и палладии и на их сплавах они нашли, что теплоты хемосорбции на серебре значительно превышают теплоты образования [c.206]

    МЕЖКРИСТАЛЛИТНАЯ КОРРОЗИЯ, интеркристаллит-ная коррозия — разрушение границ зерен вследствие электрохимической коррозии металлов. Вызывает потерю прочности и пластичности металлов, приводит к преждевременному разрушению конструкций. М. к. (рис.) подвержены сплавы на основе железа (железо — никель — хром железо — марганец — никель — хром железо — хром и др.), никеля (никель — молибден никель — хром — молибден), алюминия (алюминий — медь алюминий — магний — кремний) и др. элементов. [c.789]

    ЭЛЕКТРОВАКУУМНЫЕ МАТЕРИАЛЫ — материалы, предназначенные для эксплуатации в условиях вакуума илп разреженных газов. Про.. , производство больщинства Э. м. освоено в СССР в 50-х гг. Э. м. подразделяют па электродные (материалы катодов, анодов, сеток, кре-нежпых деталей в электр, н электровакуумных приборах и т. п.) и электроизоляционные (стекло, электрокерамика, в т. ч. люминофоры). К электродным Э. м. относятся тугоплавкие металлы (вольфрам, молибден, тантал, пиобий, титан, цирконий, рений), черные и цветные металлы (железо, никель, медь), а также сплапы на их основе. Осн. марки сплавов па основе переходных метал- [c.767]


Смотреть страницы где упоминается термин Сплавы железа с никелем и молибденом: [c.82]    [c.332]    [c.85]    [c.310]    [c.370]    [c.418]    [c.689]    [c.743]    [c.66]    [c.137]    [c.375]    [c.441]    [c.666]    [c.682]    [c.768]    [c.388]   
Коррозия металлов Книга 1,2 (1952) -- [ c.292 , c.296 ]

Коррозия металлов Книга 2 (1952) -- [ c.292 , c.296 ]




ПОИСК





Смотрите так же термины и статьи:

Груздева, А. С. Адамова. Влияние железа, никеля и хрома на коррозионные и механические свойства сплавов цирконий — молибден — ниобий и цирконий — мель — олово

Железо сплавы

Кислоты, действие на сплавы железа кремнием и молибденом железа с никелем

Молибден сплавы

Молибден сплавы с никелем

Пятницкий, И. А. Трегубое. Влияние железа, никеля и хрома на коррозионную стойкость и механические свойства сплавов системы цирконий — медь — молибден

Сплавы никеля

Сплавы никеля Jt И h I Сплав

Сплавы никеля с молибденом и никеля с молибденом и железом (хромом)

молибден никель платину сплавы железа

молибден никель платину сплавы железа с никелем сплавы меди

молибден никель платину сплавы железа с цинком

молибден никель платину сплавы железа сплавы никеля

никеля с молибденом и железом никеля с молибденом

сплавы никеля его сплавы на железо



© 2024 chem21.info Реклама на сайте