Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дихроизм магнитный

    К большому сожалению, следует указать на то, что некоторые методы практически не используются в нашей стране из-за отсутствия соответствующей аппаратуры, что существенно снижает уровень исследований. Это касается частично новинок спектроскопии ЯМР, а также фотоэлектронной спектроскопии, колебательного кругового дихроизма, магнитного кругового дихроизма. Можно надеяться на то, что дальнейшее развитие научного приборостроения ликвидирует этот пробел. [c.264]


    Ориентация в полимерах обычно изучается методами двойного лучепреломления, инфракрасного дихроизма, рентгеновской дифракции под большими и малыми углами, ядерного магнитного резонанса и др. Необходимость применения одновременно многих методов диктуется их различной чувствительностью к ориентации цепей в целом и дискретных элементов структуры и, соответственно, различным характером усреднения при численном выражении параметров ориентации. [c.185]

    Колебательный круговой дихроизм. Вращательная сила колебательных переходов так же, как и электронных, определяется скалярным произведением электрического и магнитного моментов перехода. Так, для 5-го нормального колебания при переходе из основного состояния в первое возбужденное имеем выражение [c.213]

    Явление Фарадея выявляет индуцированную анизотропию вещества в магнитном поле для лучей с правой и левой круговой поляризацией. Получаемые данные в виде численных значений угла поворота плоскости поляризации линейно поляризованного света или кривых дисперсии магнитного оптического вращения или магнитного кругового дихроизма используются для изучения электронного строения молекул. [c.229]

    Однако практически более удобно изучение МКД (магнитный круговой дихроизм), которое заключается в измерении кривых [c.256]

    Наиболее важно применение эффекта Фарадея, а именно магнитного кругового дихроизма, в относительно высокосимметричных системах, таких, как координационные соединения, ароматические соединения и биологически активные соединения. Этот метод имеет значительные преимущества перед методом электронных спектров поглощения. Однако слишком еще преобладает эмпирический подход в анализе экспериментальных данных. Необходимо дальнейшее развитие теории метода. [c.262]

    Какие величины входят в уравнение для магнитного кругового дихроизма молекул Каков их физический смысл  [c.263]

    Какие применения в химии имеют явление Фарадея и магнитный круговой дихроизм  [c.263]

    Магнитный круговой дихроизм (МКД) [c.280]

    Спектрометрия кругового дихроизма Спектроскопия поглощения рентгеновских лучей Спектроскопия ядерного магнитного резонанса (ЯМР) Спектроскопия электронного парамагнитного (спинового) резонанса (ЭПР) [c.151]

    Таким образом, рибосомные белки не отличаются принципиально от обычных растворимых глобулярных белков по своей компактности и общей степени свернутости полипептидной цепи во вторичные и третичные структуры. Компактность некоторых рибосомных белков в сравнении с рядом обычных растворимых глобулярных белков, в терминах их радиусов инерции, демонстрируется на рис. 55. На рис. 56, а дан спектр кругового дихроизма одного из рибосомных белков . o/i-S15—, показывающий высокую долю вторичной структуры (а-спиралей) в нем. На рис. 56,6 дан спектр ядерного протонного магнитного резонанса этого же белка, из которого видно суще- [c.95]


    Некоторые аминокислоты можно анализировать, не подвергая белки гидролизу. Например, содержание триптофана можно определить с помощью метода магнитного кругового дихроизма [4], спектрофотометрическими измерениями восстановленного белка [c.259]

    Можно сравнительно просто определить, какую природу — химическую (т. е. обусловленную пигментом) или физическую (обусловленную структурой) — имеет данный цветовой эффект. Идентификация и характеристика пигмента обычно является стандартной задачей в органической химии. В последующих главах первой части этой книги приведены основные химические свойства наиболее крупных групп природных пигментов. Гораздо более сложной является проблема взаимодействия молекул пигмента с их ближайшим микроокружением, напри-ме с белками в мембранах. Применение сложных современных физико-химических методов, таких, как резонансная рамановская спектроскопия, линейный и круговой дихроизм и ядерный магнитный резонанс, позволяет решить эту проблему, а также получить информацию о молекулярных изменениях, которые претерпевают некоторые пигменты при их функционировании. Вторая часть этой книги представляет собой обзор функций природных пигментов как в роли окрашивающих агентов, так и в роли участников гораздо более сложных процессов, таких, как фотосинтез, зрение и другие фотореакции, которые могут протекать за время порядка пикосекунд. [c.30]

    В согласии с общими положениями молекулярной оптики (см. 5.5) магнитному оптическому вращению (MOB) отвечает магнитный круговой дихроизм (МКД) в полосах поглощения вещества. Перечисленные явления удобно продемонстрировать в поглощении (рис. 7-Ю) [34]). Расщепление основного состояния дает частоты поглощения правой и левой волн шо =  [c.441]

    Наличие ориентационного дальнего порядка в нематическом жидком кристалле приводит к появлению макроскопической анизотропии вешества относительно ряда свойств оптических, магнитных, электрических. Поэтому 1 змерение двойного лучепреломления в жидком кристалле [12—14], его диамагнитной анизотропии [15] или дихроизма [16] может служить непосредственным методом определения величины р. [c.59]

    Другим важным свойством электромагнитной волны является ее поляризация. Неполяризованные электромагнитные волны имеют случайное направление своих электрических и магнитных составляющих относительно оси распространения волны. На примере рис. 18-3 это означает, что электрические и магнитные составляющие (поля), которые всегда остаются ортогональными друг к другу, имеют переменную и непредсказуемую ориентацию в плоскости, перпендикулярной направлению распространения волны. Если, однако, все осцилляции электрического (или магнитного) поля находятся в какой-либо одной плоскости (например, плоскость Ех или Мх), то говорят, что волна плоско поляризована, как это и показано на рис. 18-3. Если эта плоскость вращается с постоянной скоростью вокруг оси распространения волны, то говорят, что волна поляризована по кругу. Хотя мы не будем далее использовать эти представления, следует заметить, что эти явления положены в основу нескольких важных спектрохимических методов— поляриметрии, дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД). Эти методы зависят от способности некоторых оптически активных химических частиц изменять направление поляризации электромагнитной волны и иСпользуются в анализе для идентификации этого особого класса веществ. [c.610]

    Интенсивно развиваются методы снятия спектров магнитной дисперсии оптического вращения (МДОВ) и особенно магнитного кругового дихроизма (МКД). В основе этих методов лежит эффект Фарадея любое прозрачное вещество, помещенное в магнитное поле, вращает плоскость поляризации при прохождении через [c.43]

    С двойным лучепреломлением полимеров связано возникновение явления фотоупругости (в механическом поле), эффекта Керра (в электрическом поле) и эффекта Коттона—Мутона (в магнитном поле). Фотоупругость полимеров зависит от их фазового и физического состояния. Метод фотоупругости используется для изучения характера распределения внутренних напряжений в полимерах без их разрушения [9.4]. Изучая эффект Керра в полимерах, можно оценить эффективную жесткость полярных макромолекул, мерой которой служит корреляция ориентаций электрических диполей вдоль цепей [9.5]. Наблюдение эффекта Коттона — Мутона (проявление дихроизма в магнитном поле), обусловленного диамагнитной восприимчивостью и анизотропией тензора оптической поляризуемости, позволяет оценивать значения коэффициентов вращательного трения макромолекул полимеров. Все эти методы исследования оптических свойств полимеров получили широкое распространение и, так же как и спектроскопические методы, в достаточной мрпл описаны в литературе [9.6 50]. [c.234]


    МАГНИТНЫЙ КРУГОВОЙ ДИХРОИЗМ (МКД) и ДИСПЕРСИЯ МАГНИТНОГО ОПТИЧЕСКОГО ВРАЩЕНИЯ (ДМОВ) [c.256]

    В литературе [4] описаны различные методы исследования структуры пленок, ориентированных в двух взаимно иерпенд1 ку-лярных направлениях (рентгеновская дифракция, двойное лучепреломление, инфракрасный дихроизм, рассеяние света, ядерный магнитный резонанс, магнитная анизотропия, а в известной степени таклсе изучение механических и электрических характеристик). [c.280]

    Эти выводы теоретического анализа находятся в хорошем согласии данными экспериментальных исследований, которые были специально поставлены нами для проверки результатов расчета монопептидов. К изучению пространственного строения представительного ряда метил-а идов Ы-ацетил-а-аминокислот и их Ы-метильных производных, перечисленных ниже, были привлечены методы инфракрасной спектроскопии, ( рерного магнитного резонанса, дисперсии оптического вращения, кругового дихроизма, а также дипольных моментов и газожидкостной осмо- Стрии [88]  [c.163]

Рис.. io. Спектры циркулярного дихроизма и протонного ядерного магнитного резонанса рибосомного белка S15, демонстрирующие существование вторичной и третичной структуры (по Z, V, Gogia et al, FEBS Lett,, 1979, v. 105, p. 63-69) Рис.. io. Спектры <a href="/info/150509">циркулярного дихроизма</a> и <a href="/info/161714">протонного ядерного магнитного резонанса</a> <a href="/info/97339">рибосомного белка</a> S15, демонстрирующие существование вторичной и <a href="/info/35984">третичной структуры</a> (по Z, V, Gogia et al, FEBS Lett,, 1979, v. 105, p. 63-69)
    Согласно электромагнитной теории, световая волна состоит из электрических и магнитных векторных компонентов, которые находятся под прямыми углами друг к другу и к направлению распространения волны. Частота колебаний является частотой излучения. Свет, испускаемый природным источником или обычной лампой накаливания, неполяризован. Однако если его пропустить через поляризатор, то пройдет лищь свет с определенной ориентацией электрических и магнитных векторов. Пигмент, у которого хромофорные группы расположены беспорядочно, будет поглощать свет определенной длины волны независимо от того, поляризован свет или нет. Если же благодаря упорядоченной ориентации хромофоров в природной структуре имеет место асимметрия, то поглощение будет зависеть от плоскости поляризации луча света. Существуют две взаимно перпендикулярные плоскости поляризации, характеризующиеся соответственно максимальным и минимальным поглощением, для которых можно получить ди-хроичное отнощение. Этот феномен лежит в основе линейного дихроизма. Исследования с помощью линейного дихроизма оказались очень полезными при изучении ориентации пигментных хромофоров в упорядоченных биологических структурах, особенно в фотосинтетических пигмент-белковых комплексах. [c.28]

    Абсолютная конфигурация многих хиральных каротиноидов была определена главным образом с помощью оптических методов [дисперсии оптического вращения (ДОВ), кругового дихроизма (КД)] и ядерного магнитного резонанса (ЯМР). Недавно было обнаружено, что у разных живых организмов встречаются различные оптические изомеры каротиноидов. Так дрожЖи Рка111а гНойогута образуют (ЗР, 5 / )-астаксантин ( 19), в то время как омар накапливает преимущественно (< 5, 5 5)-изомер (2.20) наряду с ЗЯ, З Щ- и мезо-(ЗР, 3 5)-формами в меньщих количествах. [c.42]

    В 1845 г. Фарадей записал в своем дневнике ...в конце концов мне удалось намагнитить и наэлектризовать луч света и осветить магнитную силовую линию . Речь шла об открытии магнитного вращения плоскости поляризации света, распространяющегося вдоль направления магнитного поля. Это явление получило название эффекта Фарадея. Приведенные слова имеют лишь фигуральный смысл — магнитное поле действует не на свет, а на вещество, которое обретает в поле кругоное двулуче-преломленпе. Сравнительно недавно эффект Фарадея — магнитное оптическое вращение (MOB) и магнитный круговой дихроизм (МКД) — нашли важные применения в молекулярной биофизике. [c.159]

    Ценная информация об ЭКВ в НЬ получена с помощью магнитной поляриметрии ( 5.8) и эффекта Мёссбауэра ( 5.3). Дисперсия магнитного вращения (ДМВ) и магнитный круговой дихроизм (МКД) чрезвычайно чувствительны к особенностям строения НЬ и МЬ, которые практически неразличимы по спектрам поглощения. На рис. 6.22 показаны кривые ДМВ для МЬ и его комплексов с лигандами. Это — электронные эффекты. Их [c.213]

    Комплексные соединения переходных металлов обладают быми свойствами, удобными для их экспериментального исс дования. Этими свойствами являются наличие полос поглощения в длинноволновой — видимой — области спектра, парамагнетизм и наличие спектров ЭПР (за немногими исключениями, такими как МЪОг и НЬОа). Как уже сказано, симметричные комплексы характеризуются выразительными спектрами магнитного вращения и магнитного кругового дихроизма. [c.218]

    Отклонение формы частиц от сферической дает ряд новых эффектов [28]. В первую очередь это дихроизм — различие в интенсивности рассеяния света при падении на частицы луча света, параллельного и перпендикулярного длинной оси частицы. Практически дихроизм можно наблюдать, если все частицы коллоидного раствора ориентировать параллельно воздействием электрического (или магнитного) поля. При достаточно больщой концентрации частиц эффекты их ориентации во внещнем поле мог>т многократно перекрываться эффектами коагуляции под действием внещнего поля. Примечательно, что коагуляция может быть обратимой по отнощению к полю, т. е. при его выключении происходит распад флокул коагулята на исходые частицы и возврат к первоначальной величине коэффициента рассеяния света (см. подраздел 3.19). [c.748]

    Основные задачи выделение в индивидуальном состоя -нии изучаемых соединений с помощью кристаллизации, перегонки, различных видов хроматографии, электрофореза, ультрафильтра-цни, ультрацентрнфугирования, противоточного распределения и т. п. установление структуры, включая пространственное строение, на основе подходов органической и физико-органической химии с применением масс-спектрометрии, различных видов оптической спектроскопии (ИК, УФ, лазерной и др.), рентгеноструктурного анализа, ядерного магнитного резонанса, электронного парамагнитного резонанса, дисперсии оптического вращения и кругового дихроизма, методов быстрой кинетики и т. п. в сочетании с расчетами на ЭВМ химический синтез и химическая модификация изучаемых соединений, включая полный синтез, синтез аналогов и производных,— с целью подтверждения структуры, выяснения связи строения и биологической функции, получения практически ценных препаратов биологическое тестирование полученных соединений in vilro и in vivo. [c.11]

    Вязкоупругие свойства жидкого кристалла характеризуются набором модулей упругости Кц и коэффициентов вязкости уь определяющих свойства однородного жидкого кристалла. Эти параметры в сочетании с анизотропией магнитной и диэлектрической восприимчивостей Дх и Ае определяют характер изменений в жидком кристалле при внещних воздействиях. Для полипептидных жидких кристаллов Ах и Ае положительны по знаку. Следовательно, в достаточно сильном магнитном (электрическом) поле жидкий кристалл макроскопически однородно ориентирован так, что продольные оси спиральных макромолекул параллельны направлению поля. Очевидно, что такая упорядоченность нарушает холестерическую макроструктуру, характерную для жидкого кристалла ПБГ в отсутствие внешнего поля. Фактически такой структурный переход от холестерика к нематику используется во многих технических устройствах благодаря удобству контроля за переходом и позволяет определить критическую величину поля, индуцируюш его такой переход. Индуцированный полем переход был открыт в лиотропных системах при изучении молекул растворителя методом ЯМР-опектроскопии [32—34]. Позднее этот лереход изучался методами ЯМР [35], инфракрасного дихроизма 4], оптических исследований [36], магнитной восприимчивости [37] и импульсной лазерной техники [38]. Переход можно также наблюдать при измерениях шага холестерической спирали как функции напряженности лоля. На рис. 11 показана зависимость относительного шага [c.198]

    Общее выражение для дипольного момента показывает, что его вычисление в случае возбужденных состояний ничем не отличается от вычисления дипольного момента молекулы в основном состоянии. Сложнее определить его экспериментально. Если молекула имеет достаточно большой постоянный диполь ( л > >3-10-3 Кл-м), он ориентируется в сильном магнитном поле, что обнаруживается по появлению дихроизма. Введем определение величины Ljjt [c.407]

    У желатиновых пленок, содержащих красители, в магнитном поле был обнаружен дихроизм, а его изменения при облучении изучались Ямамото [166]. Этот фотоэффект дают малахитовый зеленый, родамин В, фуксин, флуоресцеин, пинахром, пинацианол и азокрасители. Ямамото предполагает, что фотоэффект связан с образованием триплетного состояния красителей при облучении. [c.303]

    Образование неравновесных форм многих металлсодержащих белков в замороженных растворах быстрыми электронами было зарегистрировано при низкотемпературном восстановлении с использованием различных физических методов (оптическое поглощение, ЭПР, магнитный круговой дихроизм). Все ссылки можно найти в монофа-фиях [1,4,31]. [c.78]


Смотреть страницы где упоминается термин Дихроизм магнитный: [c.131]    [c.215]    [c.250]    [c.264]    [c.263]    [c.641]    [c.587]    [c.21]    [c.530]    [c.169]    [c.169]    [c.77]   
Молекулярная биофизика (1975) -- [ c.441 , c.451 ]




ПОИСК





Смотрите так же термины и статьи:

Дихроизм



© 2025 chem21.info Реклама на сайте