Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры магнитного вращения

    В процессе физико-химических исследований было изучено много аспектов эффекта Фарадея [7—И]. Его открытие явилось важным доказательством электромагнитной природы света. С 1900 по 1920 г. основное внимание было направлено на изучение формы аномальной дисперсии MOB, так как различные приложения классической электронной теории приводили к разной частотной зависимости MOB. Вскоре после появления волновой механики анализ спектров высокого разрешения молекул простых газов был дополнен спектрами магнитного вращения (СМВ), в которых измерялась общая интенсивность света, пропущенного через скрещенные поляризаторы, между которыми помещен образец, находящийся внутри соленоида. В тот же период изучение температурной зависимости MOB кристаллических солей парамагнитных ионов при очень низких температурах позволило найти их магнитную восприимчивость, а из нее извлечь информацию о взаимодействии ионов с кристаллической решеткой [11]. Не так давно после успешных исследований естественной оптической активности и кругового дихроизма, в результате которых были получены ценные сведения о структуре ряда соединений [3—5], с целью получения той же информации вновь стали изучать MOB и МКД в полосах поглощения [12—33]. Значительный теоретический и практический интерес представляет также эффект Фарадея в ферритах [24], в полупроводниках [25, 26] и его применение для модуляции света [27—29]. [c.399]


    Измерения спектров магнитного вращения [c.421]

    В настоящее время очевидно, что огромный интерес представляют опыты по получению кривых МКД и спектров магнитного вращения с помощью методики, описанной в разделе Другие молекулы. Газы.  [c.423]

    Спектры магнитного вращения [c.428]

    Химические реакции и обменные процессы очень схожи с явлением релаксации. Они также определяются необратимыми случайными процессами. Химические процессы, такие, как внутренние вращения в молекулах, перемещение связей, валентная изомеризация, химический обмен и химические реакции произвольной сложности, могут привести к обмену ядер между неэквивалентными электронными окружениями и вызвать характерные изменения в спектре магнитного резонанса. [c.83]

    Следует указать, что настоящая книга, как и предыдущие книги такого профиля, конечно, не является всеобъемлющей в отношении охвата всех физических методов, применяемых в неорганической химии. Это естественно, так как арсенал таких методов все время расширяется. Укажем, например, на то, что в самое последнее время в оригинальной литературе появилось много работ по исследованию неорганических соединений с помощью эффекта Фарадея (магнитного вращения плоскости поляризации). Этот метод родственен исследованию оптической активности методами ДОВ и ЦД, но может быть применен к значительно более широкому ряду веществ, поскольку многие соединения проявляют оптическую активность, будучи помещенными в магнитное поле. Очевидно большое значение таких исследований для понимания спектров и, следовательно, электронных уровней неорганических соединений. Монографическая литература часто не успевает достаточно быстро охватить все новые методы. Но настоящая книга должна научить читателя, во-первых, следить за новыми методами и, во-вторых, разбираться в их основах, базируясь на более подробном рассмотрении тех методов, которые уже нашли отражение в монографиях и, в частности, в данной книге. Так, например, внимательное изучение статьи, посвященной оптической активности, позволит читателю без труда разбираться в статьях по эффекту Фарадея. [c.11]

    При подстановке в это выражение разумных значений моментов и было обнаружено [48], что ->0,01 может получаться только в случае магнитных дипольных переходов. В соответствии с предсказанием Моффита [49] наблюдаемый в комплексах любой симметрии эффект Коттона свидетельствует о том, что в спектрах оптического вращения преобладают магнитные дипольные переходы. В табл. 1 приведены типичные значения фактора д для нескольких соединений переходных металлов. Эти данные иллюстрируют тот случай, когда поглощение, дозволенное по магнитным дипольным правилам отбора в родственных октаэдрических соединениях, продолжает оставаться основным фактором, определяющим оптическую активность также и в случае комплексов, симметрия которых значительно ниже октаэдрической. [c.169]


    Рассмотрим теперь способы изображения спектров, используемые в прикладной молекулярной спектроскопии. Очевидно, что в зависимости от расстояния между комбинирующими уровнями, зависящего главным образом от их природы, спектральная линия или полоса, отвечающая данному переходу, может попасть в принципе в любую область шкалы электромагнитных волн (рис. 1.5). При этом спектры молекул, связанные с переходами валентных электронов, колебаниями ядер и вращением молекулы как целого, располагаются в оптической области частот, тогда как спектры магнитного резонанса, например, попадают в радиочастотную область. Оптическую область принято подразделять на три части — инфракрасную, видимую и ультрафиолетовую, а инфракрасную и ультрафиолетовую, кроме того, на ближнюю и дальнюю (рис. 1.5). В соответствии с этим принято и спектроскопию делить на радиочастотную, инфракрасную, видимую, [c.9]

    Для химика наибольший интерес представляют два первых тома справочника. В 1-м томе (издан в 4 книгах), посвященном атомной и молекулярной физике, собраны основные физические и химические константы, характеризующие атомы, ионы (радиусы, спектры, магнитные моменты, поляризуемость), молекулы (межатомные расстояния, энергии химических связей, барьеры внутреннего вращения, ИК-, КР-, УФ- и микроволновые спектры, оптическое вращение, поляризуемость, магнитные моменты), кристаллы (типы решеток, рентгеновские спектры, радиусы атомов и ионов). Том 2 (издан в 9 книгах) содержит сведения о свойствах веществ в их агрегатных состояниях давление пара, плотность и взаимная растворимость жидкостей, осмотическое давление, крио- и эбулиоскопические константы, диаграммы плавления твердых тел, термохимические данные и термодинамические функции, электрические и магнитные свойства, оптические константы. [c.14]

    Существует также прямое взаимодействие векторов моментов магнитных диполей электрона и ядра, которое зависит от величины момента ядра и от угла, образуемого вектором ядро — электрон, с направлением магнитного поля. В изотропных системах при хаотическом движении частиц это взаимодействие усредняется. В общем случае, как и -фактор, константа СТВ а —величина тензорная. Только для изотропных систем этот тензор характеризуется одним параметром (сферическая симметрия), а для анизотропных систем имеет два (симметричный волчок — эллипсоид вращения) или три (асимметричный волчок) независимых параметра. Удобно разделить тензор СТВ на изотропную и анизотропную части. Анизотропная составляющая связана как раз с прямым дипольным взаимодействием и обратно пропорциональна кубу расстояния между ядром и электроном, усредненного по волновой функции электрона. При значительной анизотропии тензора СТВ спектры ЭПР сильно усложняются и для их анализа требуется компьютерная обработка с соответствующими программами, составленными по алгоритмам решения задач с разной записью гамильтонианов взаимодействия сложных систем с полем. [c.62]

    Высокотемпературная плазма является генератором лучистой энергии. Спектр ее существенно отличается от спектра абсолютно черного тела. В спектре плазмы присутствуют тормозные излучения, обусловленное торможением электронов в поле ионов рекомбинационное излучение, обязанное процессу образования нейтральных атомов из ионов и электронов, а также излучение возбужденных ионов и атомов. Кроме того, упомянутое выше ларморовское вращение электронов в магнитном поле приводит к так называемому бетатронному излучению. [c.538]

    Как по виду спектра ЯМР установить направление развертки магнитного поля и скорость вращения трубки с образцом  [c.58]

    Квантовые числа п, I, т недостаточны для полной характеристики энергии и состояния электрона в атоме. Изучение атомных спектров, снятых в магнитном поле, показало, что кроме трех степеней свободы движения (г, О и ф) электрон должен иметь еще и четвертую — вращение вокруг собственной оси. Проекция углового момента количества движения электрона на ось г может иметь два значения и —которь(е называются спиновыми квантовыми числами и обозначаются буквой m . [c.13]

    Спиновое квантовое число. Изучение тонкой структуры атомных спектров показало, что кроме различия в размере облаков, их формы и характера расположения относительно друг друга электроны различаются спином. Спин можно представить как веретенообразное вращение электрона вокруг своей оси. Для характеристики спина электрона вводится четвертое квантовое число ms, называемое спиновым. Оно имеет значения +1/2 и -1/2 в зависимости от одной из двух возможных ориентаций спина в магнитном поле. [c.26]

    В спектрах ЯМР нек-рых А.к. наблюдается магнитная эквивалентность всех терминальных протонов (т. наз. динамич. аллильные системы), что объясняется быстрыми и обратимыми переходами комплексов в а-аллильные производные, межмол. обменом, вращением аллильного лиганда и др. [c.104]


    Еще одна область возможных применений спектроскопии ядерного магнитного резонанса основана на том, что спектры ЯМР многих соединений зависят от температуры. С таким случаем мы сталкиваемся при изучении спектра диметилформамида. При 40°С в нем наблюдается дублетный резонансный сигнал от протонов метильных групп, а при 160°С в спектре виден только синглет (рис. 3). Причина этих различий в спектрах при двух температурах — высокий барьер вращения вокруг связи карбонильный атом углерода — азот (87,8 кДж/моль), которая обладает частично двойным характером, что можно представить резонансной формой а. Поэтому две метильные [c.13]

    Спектры атомов проявляют тонкую структуру, которая не может быть объяснена при помощи только что обсуждавшейся теории. Например, некоторые линии могут быть разрешены в близко расположенные мультиплеты в присутствии магнитного поля (эффект Зеемана) или электрического поля (эффект Штарка). Эта тонкая структура была объяснена в 1925 г. Гаудсмитом и Уленбеком влиянием собственного магнитного момента электрона, который не зависит от его орбитального момента. Позднее Дирак применил теорию относительности к квантовой механике и показал, что действительно можно теоретически обосновать собственный угловой момент электрона. Термин спин электрона применяется, но было бы неправильно думать, что собственные магнитные эффекты электрона обусловлены вращением массы вокруг оси. Собственный угловой момент электрона может быть рассмотрен в известном смысле аналогично орбитальному угловому моменту. Величину 5 полного спина можно выразить как [c.391]

    Комплексные соединения переходных металлов обладают быми свойствами, удобными для их экспериментального исс дования. Этими свойствами являются наличие полос поглощения в длинноволновой — видимой — области спектра, парамагнетизм и наличие спектров ЭПР (за немногими исключениями, такими как МЪОг и НЬОа). Как уже сказано, симметричные комплексы характеризуются выразительными спектрами магнитного вращения и магнитного кругового дихроизма. [c.218]

    Спектр магнитного вращення окиси азота в близкой инфракрасной области. [c.248]

    Весьма вероятно, что удастся обобщить и систематизировать из-м ерения абсорбции инфракрасной части спектра и получить быстрый метод качественного анализа углеводородных смесей. След я числу классов углеводородов, представленных в смеси, числу, которое ниже Ш1И равно пяти (парафиновые, олефиновые, циклические насыщенные, гидроароматические и ароматические), можно установить равное число уравнений, связывающих концентрации различных, представленных в смеси классов углеводородов, зная уравнение, выведенное из измерений 1) дисперсии рефракции, 2) магнитного вращения плоскости поляризации, 3) критической температурьг растворимости в анилине, 4) критической температуры растворимости в беязило-Бом спирте, а также имея в виду равенство — [c.110]

    Интенсивно развиваются методы снятия спектров магнитной дисперсии оптического вращения (МДОВ) и особенно магнитного кругового дихроизма (МКД). В основе этих методов лежит эффект Фарадея любое прозрачное вещество, помещенное в магнитное поле, вращает плоскость поляризации при прохождении через [c.43]

    Представление о магнитной эквивалентности. Мы уже отмечали, что необходимо сделать несколько разъясняющих замечаний о ценности правил первого порядка для анализа тонкой структуры сигналов ЯМР. Часто даются объяснения, которые приводят к ошибочному мнению, будто между протонами внутри группы нет спин-спинового взаимодействия. Например, его нет между тремя протонами метильной группы, поскольку это никак не сказывается на спектре. В связи с этим мы сформулируем здесь правило, которое будет детально разъяснено позднее. Оно гласит спин-спиновое взаимодействие между магнитно эквивалентными ядрами не проявляется в спектре. Магнитно эквивалентными мы называем такие ядра, которые имеют одну и ту же резонансную частоту и общее для всех характеристическое значение константы спин-спинового взаимодействия с ядрами любой соседней группы. Ядра с одинаковой резонансной частотой называют изохронными. Часто они и химически эквивалентны, т. е. имеют одинаковое химическое окружение. Однако химически эквивалентные ядра не обязательно являются магнитно эквивалентными (см. также разд. 1, гл. VI). Протоны метильной группы магнитно эквивалентны, поскольку вследствие быстрого вращения вокруг связи С — С все три протона приобретают одинаковые усредненные по времени резонансные частоты. Константа спин-спинового взаимодействия с протонами соседней СНг-или СН-группы аналогичным образом одинакова для всех трех лротонов, поскольку все три конформации а, б и в одинаковы по энергии и равно заселены. Поэтому геометрические соотношения [c.54]

    Ценная информация об ЭКВ в НЬ получена с помощью магнитной поляриметрии ( 5.8) и эффекта Мёссбауэра ( 5.3). Дисперсия магнитного вращения (ДМВ) и магнитный круговой дихроизм (МКД) чрезвычайно чувствительны к особенностям строения НЬ и МЬ, которые практически неразличимы по спектрам поглощения. На рис. 6.22 показаны кривые ДМВ для МЬ и его комплексов с лигандами. Это — электронные эффекты. Их [c.213]

    ПОЛЯ В различных направлениях и тем самым компенсировать естественную неоднородность поля магнита. Кроме того, для компенсации неоднородности магнитного поля в спектрометрах обычно осуществляется вращение амнулки с образцом. Быстрое вращение усредняет магнитное поле в объеме образца, приводя тем самым к значительному повышению качества спектра. При вращении образца в неоднородном магнитном поле, наряду с основным сигналом, могут появляться боковые пики, интенсивность которых зависит от однородности поля. На расстояние от пиков до основного сигнала влияет скорость вращения образца. Чтобы отличить эти пики от сигналов исследуемого вещества, обычно производят многократную съемку при различных скоростях вращения. [c.41]

    Представлены полученные на частоте 25.18 МГц с использованием методики вращения под магическим углом спектры высокого разрешения С ядерного магнитного резонанса ряда углеродных продуктов (графит, алмаз, стеклоуглерод, пироуглерод, фуллерены и фуллереновые сажи), а также промежуточных и конечных продуктов карбонизации полигетероариленов. Проведен анализ формы линии сигналов ЯМР. С помощью метода деконволюции получены спектральные характеристики основных структурных составляющих единиц исследуемых продуктов. С помощью программы расчета химических сдвигов проведено моделирование предполагаемых структурных единиц и расчет основных спектральных х )актеристик последних для ряда углеродных веществ, что позволяет высказать ряд предположений как о структуре (на уровне ансамбля атомов) углеродных продуктов, так и структурных последовательностях процесса карбонизации полимерньк веществ. [c.81]

    Влияние природы растворителя на спектр ЭПР может быть объяснено механизмом [136], учитывающим возникновение слабых обменных взаимодействий при столкновении молекул в растворе. При сближении двух парамагнитных частиц обменное взаимодействие между ними может вызвать нарушение фазы ларморовых вращений спинов вокруг внешнего магнитного поля. В работах [ 137 -139] показано, что в полярных растворителях ширина сверхтонких компонент меньше, а константа сверхтонкого расщепления больше, по сравнению со значениями констант в неполярных растворителях. Этот эффект приписан возникновению комплексов радикал — растворитель. Образование комплексов свободный радикал — растворитель может быть обусловлено различными причинами, в частности водородной связью [ 138]. В ряде случаев возможно также образование молекулярных комплексов с растворителем, акцепторами, ионами металлов. Последние нередко приводят к стабилизации ион-радикалов [140, 141]. Авторы [141] считают, что молекулы растворителя локализуются на полярных заместителях или гетероатомах. [c.120]

    В дополненпе к орбитальной тонкой структуре, которую можно объяснить с помощью квантового числа /, экспериментально показано, что спектры щелочных металлов имеют дублетную структуру. Оказалось, что спектральные линии, которые когда-то считались единичными линиями, в действительности являются двумя очень близко расположенными друг к другу линиями. Объяснить это с помощью модели Бора — Зоммерфельда было невозможно. В 1925 г. Уленбек и Гаудсмит объяснили это явление тем, что электрон в дополнение к орбитальному движению имеет момент количества движения, обусловленный вращением его вокруг собственной оси, и этому вращению соответствует магнитный момент. Это приводит к новому квантовому числу, называемому спиновым квантовым числом т . Величина спинового момента количества движения равна 1/2 в единицах /г/2л. Положительные и отрицательные значения спина обусловлены его направлением. Например, если спин электрона направлен по часовой стрелке, то он взаимодействует с орбитальным магнитным моментом электрона и дает энергию, отличающуюся от энергии электрона, [c.68]

    Физические методы анализа. Определение состава самых ра,знооб-разных веществ можно осуществить, не прибегая к химическим или элекгрохимическим реакциям (см. книга 2, Введение , 3). Такого рода методы определения основываются на изучении физических свойств илп измерении физических констант исследуемого вещества, например эмиссионных спектров поглощения, электро- или теплопроводности, потенциала электрода, погруженного в раствор, диэлектрической проницаемости, вращения плоскости поляризации света, показателя преломления, флуоресценции, ядерного магнитного резонанса, радиоактивности и т. п. [c.17]

    Изучая тонкие эффекты в атомных спектрах щелочных металлов, Д. Уленбек и С. Гоудсмит в 1925 г. пришли к выводу, что состояние электрона в атоме зависит также от его собственного момента количества движения, возникающего как бы из-за вращения электрона вокруг своей оси. Разумеется, представить себе наглядно, как частица-волна крутится волчком, невозможно. Вместе с тем электрон, обладая электрическим зарядом, проявляет и собственный магнитный момент. Его называют спином электрона и обозначают через 5, равное /г. [c.35]

    Ниже 70 °С свободное вращение прекращается, возникает плоская система ХЬУб, в которой каждый из а-водородных атомов находится в различном магнитном окружении, соответственно число сигналов от этих Н-атомов в спектре ЯМР возрастает до четырех. [c.591]


Смотреть страницы где упоминается термин Спектры магнитного вращения: [c.290]    [c.861]    [c.442]    [c.653]    [c.21]    [c.290]    [c.44]    [c.147]    [c.4]    [c.177]    [c.44]    [c.123]    [c.64]    [c.337]    [c.108]    [c.55]    [c.510]   
Дисперсия оптического вращения и круговой дихроизм в органической химии (1970) -- [ c.399 ]




ПОИСК





Смотрите так же термины и статьи:

Магнитное вращение



© 2025 chem21.info Реклама на сайте