Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерного магнитного резонанса спектроскопия протоны

    После первых работ, выполненных более двадцати лет назад, спектроскопия ядерного магнитного резонанса (ЯМР) развивалась с фантастической быстротой. В принципе этот метод можно использовать для изучения всех ядер, которые обладают собственным моментом количества движения и связанным с ним магнитным моментом. Однако существенное значение имеют исследования на ядрах F, и В. Наибольшее число работ относится к изучению ЯМР на протонах, и соответственно в этой главе будет обсуждаться преимущественно протонный магнитный резонанс (ПМР). [c.179]


    Для изучения физико-химических процессов, протекающих в твердых, жидких и газообразных веществах, все шире используется спектроскопия электронного парамагнитного резонанса (ЭПР) и ядерного магнитного резонанса (ЯМР). Наиболее распространен ядерный магнитный резонанс на протонах — протонный магнитный резонанс (ПМР). [c.63]

    В повседневной практике химика-органика несравненно большее значение имеют спектроскопические методы, и здесь на первое место выдвинулся (открыт в 1946 г.) метод ядерного магнитного резонанса (ЯМР), основанный на взаимодействии магнитных моментов ядер (например, ядра водорода) с внешним магнитным полем. Метод протонного магнитного резонанса дает исчерпывающие сведения о химической природе, пространственном положении и числе атомов водорода в молекуле и тем самым о ее строении. Методы инфракрасной (ИКС) и электронной спектроскопии в ультрафиолетовой и видимой областях спектра, а также спектров комбинационного рассеяния света (СКР) выявляют функциональные группы, распределение электронной плотности, пространственное строение молекул органических соединений. Метод электронного парамагнитного резонанса (ЭПР) для определения природы свободных радикалов, образующихся при химических реакциях, обусловлен взаимодействием неспаренного электрона парамагнитного соединения со внешним магнитным полем. Масс-спектроскопия (спектрометрия) путем определения массы и относительных количеств ионов, возникающих при бомбардировке электронами молекул, исследует их строение. Метод дипольных моментов устанавливает конфигурацию молекул и отчасти распределение в них электронной плотности. Повысился интерес исследователей к методу полярографии органических соединений (изучение пространственного строения, кинетики, таутомерии и т. д.). Большое значение имеет исследование термодинамических свойств органических соединений (например, при оценке их взрывчатых свойств). [c.10]

    В основе спектроскопии ядерного магнитного резонанса лежат магнитные свойства атомного ядра. Из ядерной физики мы знаем, что некоторые ядра, в том числе и протон, обладают угловым моментом Р, который в свою очередь обусловливает появление у этого ядра магнитного момента л. Обе величины связаны соотношением [c.17]

    Весьма интересная структура ферроцена привлекла к себе внимание теоретиков, большинство которых, как мы увидим, пытались объяснить данные, полученные с помощью различных физических методов. Ранние работы были в основном посвящены обоснованию устойчивости данной молекулы и ее общих химических свойств. В этом отношении представляет значительный интерес ароматический характер молекулы ферроцена. Химические данные указывают на то, что ферроцен весьма активно вступает в реакции электрофильного замещения, например, его реакционная способность в отношении реакции ацилирования по Фриделю—Крафтсу приблизительно в 10 раз выше реакционной способности бензола [35]. Физическим доказательством ароматичности считается в настоящее время способность поддерживать кольцевые токи . Положение протонного резонанса в ферроцене [36] соответствует более сильным полям, чем в случае бензола, что нетрудно объяснить делокализацией заряда по кольцу и близостью иона металла, хотя количественно описать оба эти фактора до сих пор не удавалось. Химический сдвиг ферроцена [37] отличается от соответствующего химического сдвига бензола и близок к рассчитанному значению сдвига аниона циклопентадиенила, однако константа спинового взаимодействия —Н близка к значению соответствующей константы в бензоле. Силовые постоянные, вычисленные в приближении валентного силового поля, оказались вполне соизмеримыми [29] со значениями соответствующих силовых постоянных для молекулы бензола. Таким образом, результаты, полученные методами ядерного магнитного резонанса и колебательной спектроскопии, хотя и имеют известную ценность для эмпирических сопоставлений, но не настолько значительны, чтобы была целесообразной разработка теории, ставящей целью объяснение наблюдаемых отличий. [c.411]


    Наличие таких характеристик, как химический сдвиг и константа спин-спинового взаимодействия, тесно связанных со строением молекулы и очень чувствительных к малым изменениям в ее структуре, объясняют большие возможности спектроскопии ядерного магнитного резонанса в исследовании структуры вещества в идентификации сложных соединений. Высокая разрешающая способность и чувствительность спектров к изменению структуры обеспечивает большие аналитические возможности метода, так как практически всегда позволяет найти аналитические линии даже для очень сложных смесей или соединений, близких по своему строению. Очень важным для аналитических целей является то обстоятельство, что взаимное влияние различных соединений в смеси обычно очень мало или вовсе отсутствует. Интегральная интенсивность сигнала данной группы зависит только от числа протонов в ней, что, конечно, широко используется как при исследовании структуры веществ, так и в аналитических целях. Все современные спектрометры ЯМР снабжены интеграторами, позволяющими быстро измерять интегральную интенсивность любого сигнала, даже сложного мульти- [c.344]

    И принципы работы приборов значительно сложнее, чем в масс-спектрометрии, а книга наша посвяш ена прежде всего сахарам. С другой стороны, по спектроскопии ЯМР имеется очень много доступных книг самого различного уровня — от популярных до весьма фундаментальных . Поэтому мы здесь ограничимся лишь самым поверхностным описанием спектроскопии ядерного магнитного резонанса, причем только резонанса на протонах (спектроскопия ПМР). [c.76]

    Основные научные работы посвящены изучению физическими методами структуры пептидно-белковых веществ в растворах. Разработал общие принципы применения спектроскопии ядерного магнитного резонанса высокого разрешения для конформационного анализа пептидов (1966—1976) и установил стереохимические зависимости констант спин-спинового взаимодействия протонов (1969), ядер С и в пептидах (1972— [c.91]

    Еще одна область возможных применений спектроскопии ядерного магнитного резонанса основана на том, что спектры ЯМР многих соединений зависят от температуры. С таким случаем мы сталкиваемся при изучении спектра диметилформамида. При 40°С в нем наблюдается дублетный резонансный сигнал от протонов метильных групп, а при 160°С в спектре виден только синглет (рис. 3). Причина этих различий в спектрах при двух температурах — высокий барьер вращения вокруг связи карбонильный атом углерода — азот (87,8 кДж/моль), которая обладает частично двойным характером, что можно представить резонансной формой а. Поэтому две метильные [c.13]

    Предлагаемая читателю книга Р. Шрайнера, Р. Фьюзона, Д. Кёртина и Т. Моррилла Идентификация органических соединений издается на русском языке во второй раз. Первое издание книги, написанной Шрайнером и Фьюзоном, было переведено на русский язык и выпущено Издательством иностранной литературы в 1950 г. под названием Систематический качественный анализ органических соединений и долгое время пользовалось признанием химиков-органиков, встречающихся в своей практике с проблемой идентификации неизвестных органических веществ. Однако за тридцать лет со времени выхода в свет этой книги произошли весьма значительные изменения в методическом оснащении органической химии. Помимо классических методов исследования состава смесей и строения индивидуальных веществ, сохраняющих и поныне свое значение, появились такие мощные методы, как масс-спектрометрия органических соединений, методы спектроскопии ядерного магнитного резонанса на протонах, ядрах углерода-13, фтора, фосфора, бора и других. Обычными даже для рядовой органической лаборатории стали приборы для спектрометрии в ультрафиолетовой и инфракрасной областях спектра. [c.5]

    Прямые доказательства существования иона НаО+ получены при исследовании моногидратов серной, азотной, галоидоводородных и хлорной кислот методом протонного ядерного магнитного резонанса и рентгеноструктурным методом, а также при исследовании кислых растворов методами ИК-спектроскопии и измерения молярной рефракции. Ион Н3О+ представляет собой сильно сплюснутую пирамиду, в вершине которой расположен атом О углы при вершине равны - 115°, [c.75]

    Главной областью применения спектроскопии ЯМР является определение молекулярной структуры. Ядерный магнитный резонанс в основном используют в органической химии, поэтому наиболее распространена спектроскопия ЯМР на ядрах и В спектрах протонного магнитного резонанса (ПМР) [c.223]

    Несмотря на существование большого числа учебников и монографий по ядерному магнитному резонансу высокого разрешения, отсутствие книги, в которой бы речь шла о химических приложениях спектроскопии магнитного резонанса на ядрах (ЯМР С), ощущалось весьма остро. Появление коммерческих спектрометров ЯМР, использующих преобразование Фурье, революционизировало эту область в такой мере, что сделало доступным проведение исследований по ЯМР в самых широких кругах химиков. Тем самым к арсеналу методов, используемых химиками-органиками, добавился ценный метод, являющийся существенным дополнением к спектроскопии протонного магнитного резонанса. [c.11]


    Спектроскопия ядерного магнитного резонанса является чрезвычайно эффективным средством характеристики органических соединений по различным типам протонов. Однако в случае кислородных соединений нефти возникают затруднения, так как сигналы протонов, соседствующих с любой из функциональных [c.50]

    Прямые доказательства существования иона Н3О+ получены при исследовании моногидратов серной, азотной, галогеноводородных и хлорной кислот методом протонного ядерного магнитного резонанса и рентгеноструктурным методом, а также при исследовании кислых растворов методами ИК-спектроскопии и измерения молярной рефракции. Ион Н3О+ представляет собой сильно сплюснутую пирамиду, в вершине которой расположен атом О углы при вершине равны 115°, длина связи О—Н составляет 0,102 нм, а расстояние Н—Н 0,172 нм. Ион Н3О+ окружен гидратной оболочкой, причем в первичной гидратационной сфере содержится, по-видимому, 3—4 молекулы воды. Чаще всего комплексу из Н3О+ и молекул воды приписывают формулу Н9О4+. Подвижность такого кластера вряд ли может превысить подвижности гидратированных ионов К+ и С1-. Поэтому для объяснения высокой подвижности ионов водорода предполагают непосредственный перескок протона от частицы Н3О+ к ориентированной соответствующим образом соседней молекуле воды  [c.84]

    Одним из методов исследования, позволяющим установить, является ли соединение ароматическим, служит спектроскопия ядерного магнитного резонанса (гл. 3). Когда молекула бензола находится в магнитном поле, п-электроны циркулируют вокруг кольца. Этот индуцированный электрический ток приводит к возникновению индуцированного магнитного поля Я,-, которое усиливает приложенное магнитное поле Но в районе атомов водорода (рис. 5.10). Следовательно, протоны поглощают в не-.сколько более слабом ноле (т. е. они дезэкранированы) и имеют [c.104]

    Чтобы понять спектроскопию ядерного магнитного резонанса, нужно познакомиться с двумя свойствами ядер — их результирующим спином, обусловленным протонами и нейтронами (обе эти частицы имеют спиновое квантовое число, равное 7г), и распределением положительного заряда. Несколько различных типов ядер изображено на рис. 8-1. Если спины всех частиц спарены, то результирующего спина нет и квантовое число ядерного спина I равно нулю. Распределение положительного заряда при этом сферическое, и, как говорят, квадрупольный момент ядра eQ (где е — единица электростатического заряда, а Q — мера отклонения распределения заряда от сферической симметрии в данном случае Р=0) равен нулю. Сферическое бесспиновое ядро, изображенное на рис. 8-1, а, является примером случая, когда [c.262]

    Хотя вода — аномально слабое основание, ее сопряженная кислота — ион гидроксония — является прототипом ионов оксония, а также многих других катионов слабых оснований. О ионе гидроксония и его многочисленных сольватированных формах известно очень много, причем большинство данных приведены в недавно опубликованном обзоре 129]. В течение многих лет считают, что хорошо известный моногидрат хлорной кислоты состоит из НзО "- и СЮ -ионов. Это предположение проверялось с помощью различных структурных методов, а именно рентгеноструктурного анализа, ядерного магнитного резонанса, инфракрасной и Раман-спектроскопии. Вполне возможно, что эта проблема в ближайшем будущем будет окончательно решена с помощью метода дифракции нейтронов, который поможет установить положение протонов. [c.197]

    Желание понять структурные, функциональные и динамические факторы, характеризующие поведение воды на поверхности белка и других поверхностях, а также их взаимосвязи стимулирует интерес исследователей к этой проблеме. Спектроскопия ядерного магнитного резонанса позволяет получить информацию как о структуре, так и о динамике процессов взаимодействия. В настоящей работе внимание сосредоточено на динамических аспектах взаимодействия воды с белком. Особенно подробно обсуждено явление перекрестной релаксации между протонами воды и белка и приведены новые доказательства существования этого процесса. Непонимание значения перекрестной релаксации приводит к неправильным заключениям относительно динамики воды на белковых поверхностях. [c.149]

    Спектроскопия ядерного магнитного резонанса (ЯМР) является наиболее мощным и информативным методом физико-химического исследования органических соединений. Мы рассмотрим только протонный магнитный резонанс (ПМР).— резонанс на ядрах водорода, поскольку этот вид ЯМР применяется наиболее широко. [c.94]

    Ядерный магнитный резонанс [1—4]. Этот метод регистрирует подвижность протонов в различных энергетических состояниях. Атомы водорода в связанной воде находятся на других энергетических уровнях, чем атомы водорода в свободной воде. Эти уровни измеряются и записываются в форме спектра ЯМР. Такие измерения могут быть выполнены при любой температуре. Хотя спектроскопия ЯМР считается наиболее надежным методом измерения связанной воды, она требует дорогого оборудования, обученного персонала и обстоятельной подготовки каждого эксперимента. Соблюдение всех этих требований не всегда оказывается возможным для исследователя, работающего в области бумажной промышленности. [c.274]

    В случае неопентилового спирта в ледяной уксусной кислоте эти предположения вполне справедливы. Рассчитанные величины имеют такой же порядок, как и ультракороткие значения времени жизни, приведенные выше. Однако перед тем как представить эти данные, мы кратко рассмотрим метод измерения скоростей протонного обмена с помощью ядерного магнитного резонанса и сравним метод ЯМР с методом спектроскопии КР. [c.222]

    Из всех спектроскопических методов, которые широко применяются в комбинации с газовой хроматографией, спектроскопия ядерного магнитного резонанса (ЯМР) имеет наименьшую чувствительность. Об этом приходится сожалеть, так как спектроскопия ЯМР дает большой объем специфической информации, которая часто необходима для определения структуры соединений, разделенных методом газовой хроматографии. Такой информацией может быть химическая природа имеющихся групп, их структурная связь друг с другом, а также их пространственное (стереохимическое) соотношение. Особенно много информации несут в себе спектры резонанса на ядрах водорода (протонах) органических соединений. В этой главе кратко рассмотрены физические основы спектроскопии ЯМР, показано, как с помощью этого метода можно получать структурную информацию, отмечены связанные с этим трудности и описана необходимая аппаратура. [c.292]

    Межатомные расстояния (длины связей) в молекулах и кристаллах можно определить методами спектроскопии (включая микроволновую спектроскопию), рентгеноструктурного анализа, методами дифракции электронов и протонов, методом ядерного магнитного резонанса. Описание этих методов не укладывается в рамки данной книги. За последние сорок лет были определены длины связей для многих сотен веществ, и ока-залось, что полученные значения весьма полезны при рассмотрении структур молекул и кристаллов. [c.179]

    Спектроскопия ядерного магнитного резонанса [1—3] имеет большое значение для установления строения синтетических красителей. Способность метода протонного ЯМР (ПМР) охарактеризовать алифатические боковые цепи и замещение ароматических колец дополняет методы ИК-спектроскопии и масс-спектрометрии высокого разрешения (см. гл. 12). Кроме того, метод ЯМР на ядрах С (ЯМР- С) позволяет непосредственно наблюдать углеродные атомы скелета и углеродсодержащих функциональных групп, в которых нет протонов (например, карбонильных, нитрильных). [c.218]

    Ядерный магнитный резонанс веществ, находящихся в растворе, позволил исследовать параметры спектра и получил название ЯМР-спектроскопии высокого разрешения. К середине 50-х годов, были разработаны теоретические принципы применения метода для самых разнообразных задач химии. В настоящее время быстро развивающаяся техника и методы эксперимента в ЯМР-спектроскопии выявили необходимость использования импульсных методов-наряду со стационарными. Разработка серийных устройств, регистрирующих спектры высокого разрешения методом Фурье преобразования, дало возможность сократить время эксперимента и в ряде случаев получать более обширную информацию по сравненик> с неимпульсными методиками. Метод ЯМР (как в импульсном, так и в стационарном варианте) позволяет определить константы равновесия, константы скоростей и термодинамические характеристики процессов комплексообразования, конформационных переходов и протонного обмена. [c.253]

    До недавнего времени инфракрасная спектроскопия была главным методом изучения водородных связей [602, 244, 593]. Сейчас с той же целью все чаще применяют ядерный магнитный резонанс, который не только успешно заменяет во многих случаях спектроскопические методы, но и дает новые широкие возможности. На некоторых из них, имеющих отношение к проблеме переноса протонов, следует кратко остановиться. [c.120]

    Спектроскопия ядерного магнитного резонанса (ЯМР-спектроскопия) представляет собой особый вид абсорбционной спектроскопии. Явление резоиаиса в спектре ЯМР наступает лри поглощении электромагнитного излучения парамагнитными ядрами, находящимися в однородном внешнем магнитном поле. Маг-иитиы.м моментом обладают ядра, в состав которых входнт нечетное число нен- ронов или протонов (табл. 13). [c.137]

    История развития и становления спектроскопии ядерного магнитного резонанса на ядрах С (ЯМР весьма любопытна. Десять-пятнадцать лет тому назад среди спектроскопистов и химиков, активно использовавших спектроскопию ПМР, существовало убеждение, что многие нерешенные в то время проблемы будут решены, как только появятся реальные возможности проводить измерения спектров магнитного резонанса углерода при естественном содержании изотопа в образце (1,1%). В течение долгого времени реализация этой голубой мечты оставалась невозможной из-за трудностей экспериментального характера, связанных главным образом с низкой чувствительностью спектрометров. Лишь Лау-тербур начиная с 1956 г. в полном одиночестве медленно, но методически публиковал данные изучения спектров ЯМР простейших классов органических молекул. Он использовал очень трудоемкую методику регистрации спектров (адиабатическое быстрое прохождение), которая оставляла мало надежд на широкое применение. Начиная с 1963—1964 гг. спектроскопией ЯМР начали заниматься еще несколько групп исследователей Грант (США), Стозерс (Канада) и Липпмаа (СССР). Этот этап развития метода был связан с внедрением методов двойного резонанса (спиновая развязка от протонов) и применением накопителей слабых сигналов на основе многоканальных анализаторов. Постепенно стали появляться исследования, содержащие большой объем измерений и широкие обобщения. С 1968 г. к этим группам присоединился Дж. Робертс с сотрудниками, начавший [c.5]

    Основными методами идентификации соединений после обычного элементарного анализа, определения молекулярного веса в т. д. являются методы инфракрасной спектроскопии, протонный ядерный магнитный резонанс и в некоторой степени эффект Мессбауера. [c.254]

    Обычно для установления строения органических соединений совершенно необходимо применение ИК- или ЯЛ1Р-спектроскопии. Анализ ИК-спектров (разд. 5.2) является превосходным методом определения функциональных групп. Его можно применять параллельно с проведением химических реакций на те или иные функциональные группы. Такое совместное применение ИК-спектро-метрии и химических реакций в ряде случаев действительно может привести к установлению строения изучаемого вещества. Часто при выяснении структуры веществ большую помощь оказывает метод ядерного магнитного резонанса. По существу, ЯМР-спектроскопия представляет собой метод определения относительного расположения и числа спин-активных ядер (например, протонов). [c.33]

    Спектроскоппя ядерного магнитного резонанса (ЯМР) на ядрах углерода С — относительно новый метод структурного анализа полисахарида. В его развитие видный вклад вносит школ 1 советских ученых-химиков, возглавляемая академиком Н. К. Ко четковым. Физические основы метода подробно изложены в многочисленных публикациях, в частности в капитальном обзоре А. С. Шашкова и О. С. Чижова [ИЗ], к которому мы отсылаем читателей, желающих ознакомиться с общими положениями спектроскопии ЯМР, в том числе на ядрах углерода С, и техникой эксперимента. Отметим только, что ири съемке спектров обычно применяется тотальный двойной резонанс с подавлением спин-спинового взаимодействия С с протонами. В связи с этим теряется информация, связанная со спин-спиновым взаимодействием — Н. Таким образом, в спектре С-ЯМР основную информацию дает положение резонансных линий, т. е. химический сдвиг. [c.77]

    Для анализа неионогенных ПАВ весьма полезна спектроскопия ядерного магнитного резонанса. При возможности снятия ПМР или ЯМР спектра можно получить информацию о структуре гидрофобной части молекулы. Кроме того, из спектра можно определить соотношение гидрофобной части и ОЭ и/или ОП-части молекулы [57], как и наличие первичных и вторичных гидроксильных групп. Другим методом определения вторичных и первичных гидроксильных групп является спектроскопия ЯМР фтора-19 [57] с предварительным приготовлением трифторуксусных эфиров. Масс-спектральные данные для определенных неионогенных ПАВ могут быть получены при бомбардировке быстрыми атомами (FAB) в режиме положительных ионов. Таким образом, изучены кластеры отдельных гомологов алкиленоксида с протонами, натриевыми или калиевыми ионами. AMiDZ-TOf масс-спектры дают информацию о распределении по гомологам, по серии отдельных пиков с массовым числом 44, отвечающим отдельной молекуле ОЭ. [c.133]

    В дальнейшем мы будем использовать сокращение ЭДТА для обозначения реактива, а Н4У, НзУ , НгУ - — для обозначения различных форм ЭДТА. Методом инфракрасной спектроскопии и методом ядерного магнитного резонанса показано, что в водном растворе Н4 существует в виде цвиттер-иона, протоны от двух из четырех карбоксильных групп переходят к атомам азота. Кроме того, первая и вторая ступень диссоциации соответствуют депротонизации двух оставшихся карбоксильных групп, а третий и четвертый протон отщепляются от атомов азота. Интересно, что ионы водорода отщепляются от карбоксильных групп легче, если рядом находятся аммонийные ионные группы, В растворах, pH которых меньше 2, две отрицательно заряженные карбоксильные группы Н4У протонируются с образованием относительно сильных кислот Н5 + и Нб +  [c.184]

    Спектроскопия ядерного магнитного резонанса Такие ядра как Н, Ф, В На образец воздействуют радиочастотный сигнал и сильное магнитное поле. Измеряется зависимость интенсивности сиша-ла от напряженности поля Когда совместное действие частоты и напряженности поля соответствует энергии, необходимой для изменения ориентации ядер по отношению к полю, некоторая часть излучения поглощается Используется в основном протонный резонанс. Соседние ядра вызывают расщепление сигнала. Это позволяегг изучать пространственное расположение ядер и выяснять природу окружения атомов [c.27]

    Спектроскопия ядерного магнитного резонанса (ЯМР) является одним из самых молодых физических методов исследования органических соединений. Впервые явление ЯМР было экспериментально обнаружено в 1945 г., хотя теоретически оно было предсказано значительно раньше [1]. Практическое использование спектроскопии ЯМР для исследования строения сложных органических соеди-нениЁ стало возможным лишь после того, как в 1951 г. было обнаружено, что спектр этилового спирта состоит из трех отдельных сигналов, соответствуюш,их резонансу протонов метильной, метиленовой и гидроксильной групп [2], и что сигналы различных групп магнитных ядер в молекулах жидкостей проявляют более тонкое расш епле-ние, зависящее от числа и характера ядер, содержащихся в молекуле [5]. Ядерный резонанс жидких веществ или растворов, позволяющий исследовать число, положение и интенсивность линии в спектре, получил название ЯМР-спектроскопии высокого разрешения, в отличие от резонанса твердых веществ, называемого ЯМР-спектроскопией широких линий. В настоящее время к спектрам ЯМР высокого разрешения принято относить главным образом такие спектры, в которых ширина отдельных линий не превышает нескольких герц. Нет сомнения, что такое определение — не окончательное и в недалеком будущем требования к спектрам высокого разрешения станут еще более жесткими. [c.5]

    Первые эксперименты по обнаружению явления ядерного магнитного резонанса в конденсированном веществе были осуществлены сравнительно недавно в 1945 г. в лабораториях Блоха [1] и Перселла [2]. Надо было обладать большим даром предвидения и воображением, чтобы предсказать, к каким последствиям приведут эти первые измерения, осуществленные на протонах воды и парафина. Только в 1951 г. Арнольд, Дарматти и Паккард [3] сообщили о разрещении спектра этилового спирта, зарегистрировав три раздельных сигнала (СНз, СНг и ОН). За время, прошедшее с 1953 г., когда фирмой Уа-г1ап был продан первый коммерческий ЯМР-спектро-метр высокого разрешения , спектроскопия протонного магнитного резонанса превратилась в самостоятельную область науки более того, она стала доступным инструментальным методом анализа, эффективно используемым в различных областях научных исследований и особенно в органической химии. [c.13]

    В центре дискуссии находился последний бастион защитников неклассических карбкатионов в ряду бицикло[2,2,1]геп-тана — соединение, которое в конце концов оказалось протони-рованным нортрицикленом, причем сначала допускалось протони-рование по типу 2 схемы (8.45). Новейшие исследования с помощью фотоэлектронной спектроскопии, ядерного магнитного резонанса, спектров комбинационного рассеяния дали доказательства протонирования по типу 3 схемы (8.45) и тем самым подтвердили неклассическую структуру 3 [99].5 Сомнительно, однако, можно ли сопоставлять условия спектроскопических исследований (в ЗЬГб/ЗОаСШ/ЗОаР, при —154 °С ) с условиями обычных химических превращений (см. также стр. 576). [c.574]

    Протоны (Н, см. XXVII), связанные с тем же углеродным атомом, что и гидроксильная группа, обычно дезэкранированы и расположены в области 6=3,5—4,5 м.д. [И]. Как будет видно в этом разделе, положение и форма резояаноного сигнала зависят не только от их аксиального или экваториального характера, но и от числа и ориентации соседних вицинальных протонов, Поэтому спектроскопия ядерного магнитного резонанса имеет большое значение для установления окружения гидроксильных групп и их конфигурации. Совершенно аналогичные аргументы применимы к соответствующим протонам (Н, см. XXVIII) в ацетатах, которые отличаются от протонов Н в спиртах только тем, что их резонансные сигналы смещены в более слабое поле на 1,1 м.д. (т. е. в область 4,6—5,6 м.д.) [И]. [c.103]

    Из величины константы спин-спинового взаимодействия двух протонов при соседних атомах углерода можно вычислить торсионный угол между соответствующими связями. Поскольку пары диастереомерных веществ имеют различные значения торсионного угла в преимущественных конформациях, из значений константы взаимодействия можно определить относительную конфигурацию диастереомеров, как это было сделано, например, для производных эфедрина и псевдоэфедрина или для пары аминокислот— изолейцина и аллоизолейцина. Детально метод обсуждается в специальной литературе по спектроскопии ядерного магнитного резонанса [12]. [c.73]


Смотреть страницы где упоминается термин Ядерного магнитного резонанса спектроскопия протоны: [c.456]    [c.456]    [c.450]    [c.141]    [c.129]    [c.67]    [c.154]   
Органическая химия (1974) -- [ c.404 , c.407 , c.408 , c.410 , c.412 , c.420 , c.426 , c.428 , c.430 ]




ПОИСК





Смотрите так же термины и статьи:

Магнитная спектроскопия

Протонно-магнитный резонанс ПМР

Резонанс г ядерный магнитный

Спектроскопия магнитного резонанса

Спектроскопия магнитного резонанса резонанса

Спектроскопия ядерного магнитного



© 2025 chem21.info Реклама на сайте