Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Формы кристаллов неравновесные

    Для немолекулярных кристаллов понятие молекулы лишено смысла. Для них формой существования химического соединения в твердом состоянии является фаза. Поэтому фаза — носитель всех физических, физико-химических и химических свойств вещества, кристаллизующегося в координационной решетке, т. е. свойства вещества немолекулярной структуры зависят от состава и химического строения фаз. В этом заключается фундаментальность понятия фазы в современной химической атомистике. Однако понятие фазы здесь употребляется уже не в термодинамическом, а в несколько ином смысле. Если с термодинамической точки зрения понятие фазы можно применять только к равновесным системам , то фаза как носитель свойств вещества с немолекулярной структурой—это однородная по составу и свойствам часть системы. При этом подразумевается, что фаза может быть и метастабильной (неравновесной), то тем не менее она вполне характеризует свойства объекта. [c.21]


    Все предложенные до настоящего времени теории зарождения и роста НК и пленок игнорируют реальное состояние поверхности раздела, участие во многих случаях химических реакций в процессе кристаллизации из газовой фазы, следствием которых является наличие слоя хемосорбированных молекул на поверхности раздела. При наличии хемосорбции непосредственный обмен между подложкой и средой практически отсутствует и хемосорбционный слой в известном смысле можно считать промежуточной двумерной фазой . Рост кристалла в этом случае, по-видимому, происходит в результате актов химического распада молекул хемосорбционного слоя, механизм которых совершенно не изучен. Особая трудность возникает при обсуждении возможных механизмов роста эпитаксиальных пленок сложных соединений при жидкофазном осаждении в связи с тем, что молекулярная форма нахождения большинства этих соединений в растворах и расплавах в настоящее время неизвестна. Поэтому единой достаточно удовлетворительной теории зарождения и роста НК и пленок при газофазном осаждении пока не существует. Необходимо дальнейшее накопление надежных экспериментальных данных о реальной структуре (атомной и электронной) поверхностей раздела, о явлении хемосорбции, о так называемой закомплексованности и других определяющих явлениях. Важным также в теории гетерогенного зародышеобразования пленок является установление соотношения между процессами статистического зародышеобразования на чистых подложках и на активных центрах. Имеются сведения (Л. С. Палатник и др. 1972 г.) об образовании и длительном существовании в тонких пленках термодинамически неравновесных фаз. Поэтому пределы применимости к тонкопленочным системам (приборы микроэлектроники, оптические покрытия и др.) диаграмм состояний, разработанных для систем массивных материалов, требуют подробного анализа и обсуждения. [c.485]

    В свою очередь изучение равновесных и неравновесных свойств газов, структуры кристаллов, диэлектрических, оптических и других свойств вешеств дает много для понимания природы межмолекулярных сил. Спектроскопия в ее различньк формах — интенсивное средство исследования межмолекулярных сил. Наиболее мощным и перспективным для их исследования является метод рассеяния молекулярных пучков. Межмолекулярное взаимодействие играет большую роль и в химических процессах, оно проявляется в реакциях, протекающих в растворах, на поверхностях и в катализе. Исследование этих процессов также дает многое для поним шия межмолекулярного взаимодействия. Межмолекулярные силы сейчас исследуются очень интенсивно из-за большой важности для физики, химии, молекулярной биологии, кристаллографии, науки о полимерах, коллоидной химии, химии поверхностей и других естественных наук. [c.263]


    При контакте с ненасыщенным раствором амфитеатр будет углубляться. На рис. 22 видны ямки травления, образованные на поверхности кристалла сахарозы. У больших ямок можно отчетливо видеть спиральную форму они, вероятно, образовались в местах выхода винтовых дислокаций с большими значениями вектора Бюргерса. Мелкие ямки могли возникнуть или на винтовых дислокациях с малыми значениями вектора Бюргерса, или на краевых дислокациях, или же, что менее вероятно, в результате образования зародышевого островка на совершенной поверхности далеко от выходов дислокаций (см., например, конец раздела V, 1, Д, где приведены опыты Сирса [61]). Большие ямки травления на поверхности кристаллов сахарозы часто образуют ряды (рис. 23). Эти ямки возникают при неравновесных условиях ненасыщенности, и поэтому их форма зависит от скорости отхода спиральной ступени и кинетики испарения или растворения в различных кристаллографических направлениях. [c.390]

    Существенное влияние на скорости зарождения и роста, а также форму кристаллов оказывает вязкость жидкой фазы. С ее увеличением скорости гюз и Ил снижаются и, как правило, образуются кристаллы неравновесной формы (в виде игл, дендритов и т. п.). [c.46]

    На форму, размеры и свойства поверхности кристаллов влияют микропримеси, поскольку ряд примесных компонентов проявляет поверхностно-активные свойства. Так, пластинчатые, призматические и другие неравновесные формы кристаллов возникают в результате модифицирующего действия примесных компонентов. Примесные компоненты могут приводить к появлению и игольчатых кристаллов. [c.119]

    Поскольку за различными процессами не удается наблюдать одновременно, интерпретация происходящих при отжиге изменений остается неоднозначной. Большинство экспериментов указывает на то, что непрерывный переход от фибриллярных кристаллов малого диаметра к равновесным формам, как показано на рис. 7.1, по-видимому, отсутствует. При рекристаллизации, которая следует за плавлением, образуются метастабильные кристаллы со сложенными цепями, также чувствительные к отжигу (разд. 7.1.2, рис. 7.12). Напротив, толщина ламелярных кристаллов со сложенными цепями меняется как непрерывно, так и дискретно. Кинетику процесса утолщения ламелярных кристаллов можно описать на основе простых соотношений термодинамики неравновесных процессов (разд. 7.1.2) или на основе различных механизмов образования зародышей (разд. 7.1.3). Трудности термодинамического подхода связаны с необходимостью определения когерентного объема кристалла, форма которого в процессе отжига меняется. Эффекты разрушения кристаллов и плавления зерен и субзерен в результате спекания с трудом поддаются количественному учету (разд. 7.1.2) и существенным образом влияют на описание [уравнения (3) - (5), (7) и (9)]. Предложенные микроскопические механизмы скольжения дефектов или складчатых дислокаций (разд. 7.1.3) до конца еще не ясны. В конечном счете оба эти подхода должны позволить оценить основное влияние отжига на макромолекулярные кристаллы. [c.471]

    На первый взгляд может показаться, что рассмотренный механизм структурирования белковой цепи принципиально не отличается от кристаллизации низкомолекулярных соединений и образования у некоторых синтетических полимеров линейных регулярных форм. Это, однако, не так, хотя в обоих случаях процессы осуществляются посредством случайных флуктуаций и взаимодействий валентно-несвязанных атомов. Существенное различие состоит в том, что кристаллизацию малых молекул в насыщенном растворе и формирование ближнего порядка (одномерного кристалла) у искусственного полимера можно представить равновесными процессами, т.е. путем обратимых флуктуаций и непрерывных последовательностей равновесных состояний. Сборку же белковой цепи в трехмерную структуру нельзя даже мысленно провести только через равновесные положения системы и без привлечения бифуркационных флуктуаций. Механизм пространственной самоорганизации белка имеет статистико-детерминистическую природу и поэтому является принципиально неравновесным. Его реализация невозможна без необратимых флуктуаций, а его описание - без установления связи между свойствами макроскопической системы и внутренним строением ее микроскопических составляющих. С позиции равновесной термодинамики подобные явления просто не могут существовать. [c.99]

    Поскольку беспорядок на линии Ьс растет с повышением температуры и проявляется это, в числе прочего, в увеличении свободного объема [2], то при переохлаждении на разных неравновесных кривых ниже (тоже мигрирующей) Тпл будут зафиксированы разные степени беспорядка и разные свободные объемы. Соответственно, при отжиге, т. е. при разогреве образца с различными скоростями, система будет проваливаться на разные линии аЬ, соответствующие разной степени дефектности кристаллов. Мы видели, что даже при изотермическом отжиге, когда термокинетические эффекты снимаются, будут получаться кристаллы различных топологических форм [c.333]


    Технический хром — серебристо-белый, блестящий, твердый, но хрупкий металл. Чистота хрома оказывает существенное влияние на его физические и химические свойства. Чистый металл тягучий и ковкий [2, с. 321]. В присутствии примесей А1, Си, N1, Ре, Со, 81, , Мп (до 1%) порог хрупкости хрома резко увеличивается примеси водорода, кислорода и азота оказывают очень малое влияние [388]. Металлический хром имеет одну устойчивую структурную форму (а-фаза). В неравновесных условиях возможно формирование кристаллов хрома с другой структурой при конденсации паров хрома получена разновидность с примитивной кубической ячейкой (а = 4,581 А), близкой к структурному типу (3- . Хром обладает сложной магнитной структурой для него характерны три магнитных превращения при 120, 310 и 473° К [91]. [c.9]

    На габитус кристалла влияет также кинетика роста кристалла и другие неравновесные эффекты. Поэтому грани реальных кристаллов могут и не соответствовать равновесным формам, определяемым теоремой Вульфа. Например, если стабильная или сингулярная плоскость (100) шлифуется, скажем, под небольшим углом, то образуются плоскости, номинально описываемые индексом (х11), где х — большое число. Локальное уменьшение свободной энергии при этом возможно, только если эти плоскости превратятся в ступеньки, образуемые гранями (100) и (010). Существует общий критерий возможности такого спонтанного локального перехода [36]. [c.206]

    О. М. Полторак в работе [50] предложил учитывать понижение дифференциальной теплоты сублимации % как общую причину роста дефектности поверхности реальных кристаллов. Уменьшение величины X для реальных кристаллов связано с их макроскопической неравновесностью — малым размером частиц или мозаичным строением граней, наличием дислокаций, неравновесностью форм огранения кристаллов и т. п. Для некоторой части вещества теплота сублимации окажется сильно пониженной и в такой же мере снизится энергия образования дефектов поверхности. Некоторые области реальных кристаллов служат как бы источниками дефектов. Благодаря этому равновесие [c.115]

    Почти все твердые тела, включая минералы и металлы, являются кристаллическими. Кристаллические тела представляют собой более или менее крупные одиночные монокристаллы или сростки большого числа кристаллов — поликристаллы. Монокристалл образуется из жидкой фазы выращиванием вокруг единичного зародышевого центра. В зависимости от условий роста монокристаллов (различают равновесную и неравновесную формы), они могут иметь различную огранку. [c.141]

    Были развипы следующие мегоды неравновесной термодинамики метод термодинамических функций Ляпунова (вблизи и вдали от равновесия), вариационный принцип минимума производства энтропии, анализ производства энтропии дпя определения движущих сил и закономерностей в кристаллизации. Движущие силы кристаллизации помимо разности химических потенциалов содержат также энтальпийную составляющую, характеризующую тепловую неравновесность системы. Рассмотрена роль этих вкладов для систем с высокими тепловыми эффеетами при кристаллизации, например, ортофосфорной кислоты Анализ производства энтропии системы с фазовыми превращениями позволил подтвердить распределение Хлопина для макрокомпонента и примеси (случай полного термодинамического равновесия), получить новые закономерности (и проверить их на ряде систем) для распределения компонентов при частичном равновесии. На основе вариационного принципа минимума производства энтропии определены закономерности для стационарных форм роста кристаллов, предельного пересыщения и т.д. Используя метод избыточного производства энтропии нашли новый класс осцилляторов, роль которых могут играть процессы кристаллизации, протекающие за счет химической реакции Используя кластерную теорию пересыщенных растворов, методы нелинейной динамики, было создано математическое описание, учитывающее колебания (в том числе и на термодинамической ветви) в кристаллизации, определены причины их возникновения. Разработаны алгоритмы управления (с обратной связью и без неё) хаотическими колебаниями в системах с кристаллизацией [c.21]

    Чтобы К. происходила с заметной скоростью, систему (напр., расплав, р-р, пар) необходимо значительно переохладить или пересытить кристаллизующимся в-вом. В такой системе в течение нек-рого времени (кнкубациоаный, или индукционный, период) не происходит заметных изменений, но формируются центры (зародыши) К. Они могут образовываться также под действием электрич. поля (см. Электро-кристаллизация), видимого света или др. По достижении зародышами критич. размеров г р (0,5—5 нм) начинается спонтанный рост кристаллов, в результате чего образуется множество (Iff"—10> в 1 см ) кристаллов разного размера, формы н дефектности. На следующей стадии мелкие кристаллы растворяются, а крупные растут (осгвальдово созревание), форма кристаллов приближается к равновесной, неравновесные дефекты, повышающие энергию Гиббса кристаллич. свстемы, ликвидируются. [c.286]

    Полученное значение энтропии скорее всего относится к частной, несомненно неравновесной, конфигурации поверхности. Аналогичный вопрос поднят и в работе Бауэра [89]. В наиболее общем виде проблему можно сформулировать следующим образом. Действительно ли экспериментальные поверхностные эффекты при измерении теплот растворения и теплюемкастей являются экстенсивными характеристиками, не зависящими от размера и формы кристаллов Используя различные по размеру частиц фракции тонкодисперсного хлорида натрия, полученного методом испарения, Паттерсон и др. [90] нашли, что вклад поверхности в низкотемпературную теплоемкость меняется приблизительно пропорционально удельной поверхности порошка, определенной по адсорбции газа. Такие же измерения было бы интересно провести и на образцах хлорида натрия, полученных другими методами. [c.221]

    Отжиг путем тепловой обработки, химического или механического воздействия обусловливает понижение свободной энтальпии системы при данных условиях. При обсуждении в разд. 2.3 структур, обладающих минимумом свободной энтальпии, был сделан вывод, что для взаимодействия ближнего порядка влияние на значение свободной энтальпии различных факторов характеризуется следующей последовательностью энергия ковалентных связей, изомерия вращения и реализация плотной упаковки. На следующем структурном уровне должны рассматриваться дефекты кристаллов И конформации в аморфных областях, обладающие высокой свободной энтальпией. Эти эффекты описаны в гл. 4. Поскольку в макромолекулярных материалах многие дефекты в кристаллах являются неравновесными, отжиг благоприятствует уменьшению их числа. Еще один уровень эффектов обусловлен макроконформацией молекул (см. рис. 3.5 и разд. 3.1.2), а также размером и формой кристаллов (см. рис. 3.4, разд. 3.2 и 5.1). И наконец, следует учитывать возможность полиморфизма. В процессе отжига может иметь место любая комбинация перечисленных выше эффектов. [c.445]

    Анализ изменения формы кристалла выявляет основное макроскопическое влияние отжига макромолекулярных кристаллов. В фибриллярных кристаллах, по-видимому, не происходит непрерывного из менения длины, и они, скорее всего, плавятся и рекристаллизуются. Относительно формы малых кристаллов типа бахромчатых мицелл в настоящее время ижестно очень немного, и потому мало что можно сказать и об изменении их размеров при отжиге. Можно ожидать, что основной эффект отжига сводится в них к изменению концентрации дефектов (разд. 7.1.4) и к увеличению регулярности структуры поверхностей. Ламелярные кристаллы со сложенными цепями утолщаются более непрерывно. Основой макроскопического описания это го процесса может явиться подход, использующий неравновесную термодинамику. [c.450]

    Гиббс в 1878 г. [9] показал, что форма маленького кристалла, находящегося в равновесии с раствором, должна удовлетворять условию минимума где 01 — удельная межфаз-ная поверхностная энергия грани г (поверхностная энергия на единичную площадь грани), А — площадь этой грани. Если рост (или растворение) осуществляются в сильно неравновесных условиях, форма кристалла также будет отличаться от равновесной. Удельную межфаэную поверхностную энергию иногда называют капиллярной постоянной, а чаще межфазным поверхностным натяжением. Вульф предложил простой метод изображения зависимости ст в кристалле от направления. На фиг. 3.5 изображена так называемая диаграмма Вульфа для гипотетического кристалла. Она дает в полярных координатах главное сечение приблизительно сферической поверхности, изображающей полную зависимость свободной поверхностной энергии от направления. Расстояние от центра пропорционально энергии 0 в данном направлении. Если в каждой точке диа- [c.100]

    Форма кристалла отражает, несомненно, кристаллическую структуру и характер взаимодействия между атомами, однако влияние этих факторов на форму кристалла осуществляется благодаря кинетическим явлениям на поверхности при выяснении морфологии эти явления следует рассматривать вместе с процессами переноса. Предмет частых обсуждений — традиционная равновесная форма (форма, свободная энергия которой минимальна) — редко сохраняется под действием упоминавщихся неравновесных процессов, влияющих на форму кристалла, прежде всего по той причине, что в пересыщенной среде эффект Гиббса— Томсона относительно мал для кристаллов с размерами, превышающими несколько микрометров. К тому же, как показал Херринг [6], при незначительном изменении предположений, на основе которых рассчитывается равновесная форма, последняя существенно меняется. [c.365]

    Одно из первых исследований скоростей роста различных граней кристалла было выполнено Вульфом. Он помещал затравочный кристалл прозрачного вещества в раствор изоморфной соли и определял толщину слоев этого второго вещества, наросших на различные грани затравочного кристалла (неравновесной формы) это позволило установить относительные скорости роста различных граней. Если известны скорости роста различных граней кристалла, на основании закона Вульфа можно предопределить, какими гранями должен ограниться кристалл, если его растить достаточно долгое время при постоянных внешних условиях. Осуществим следующее геометрическое построение (рис. 5.6). Из некоторой точки О проведем два вектора ОР и ОЯ, направленных так, чтобы каждый из них был перпендикулярен к одной из исследуемых граней кристалла, а их длины были бы пропорциональ- [c.251]

    Строение реальных К. Неравновесные условия кристаллизации приводят к разл. отклонениям формы К. от плоских граней-к округлым граням и ребрам (вициналям), возникновению пластинчатых, игольчатых, нитевидных (см. Нитевидные кристаллы), ветвистых (дендритных), К. типа снежинок. Если в объеме расплава образуется сразу большое число центров кристаллизации, то разрастающиеся К., встречаясь друг с другом, приобретают 4юрму неправильных зерен. Нерелко возникают микроскопич. двойники и др. сростки. При выращивании К. не стремятся обязательно получить их в правильной кристаллографич. огранке, главный критерий качества - однородность и совершенство [c.539]

    B. И. Вернадского Мне кажется, первый указал П. Кюри, что при кристаллизации, природной или искусственной, всегда получается несколько идеальных геометрических многогранников на тысячу или тысячи кристаллов... Кюри первый понял, что это природное явление, а не случайность. Природная среда всегда неравновесная и в такой неравновесной реальной системе должен образоваться неоднородный кристалл.. .. Безупречно идеальные кристаллические формы в природе отсутствуют . Прекрасную иллюстрацию этому положению можно найти у И. И. Шафрановского и Л. В. Зыкова среди 6000 скрупулезно измеренных октаэдрических алмазов они не встретили ни одного идеального кристалла. [c.64]

    При нарушении оптимальных режимов травления затравок в процессе выращивания в кристаллах возникают трещины. Места выхода сингенетичных трещин на поверхности граней декорированы шрамовыми внциналями. При залечивании трещин возникают системы дендритов, что способствует образованию сообществ жидких включений неравновесной формы, большая часть которых характеризуется аномальным соотношением фаз. В некоторых случаях процесс переотложения вещества на стенках одного крупного включения завершается полным его расшнурованием и появлением нескольких однофазных (жидких и газовых) включений. Залечивание трещин происходит на протяжении небольшого отрезка времени (как во время кристаллизации, так и после завершения цикла) при снижении температуры раствора. По-видимому, на этом этапе возникают дендритные вростки сложной неравновесной формы. Быстрое снижение температуры ( замораживание ) останавливает преобразование дендритов, благодаря чему фиксируются различные стадии процесса перестройки включений. [c.130]

    В термодинамической теории фазовых превращений рассматривается лишь равновесие между исходной и новой фазами при допущении, что последняя фаза достигла полного развития и поверхность раздела между обеими фазами является плоской. При этом под температурой перехода понимают температуру, при которой обе фазы могут оставаться в равновесии друг с другом неограниченно долгое время. Образование и начальное развитие новой фазы с достаточной для ее обнаружения скоростью возможно только при некотором отступлении от условий равновесия. Отступления от условия равновесия могут быть гораздо более существенными, чем необходимо для роста новой образующейся фазы. Фазовый переход пар— жидкость (жидкость— кристалл) возможен только в том случае, когда исходная паровая фаза оказывается в состоянии, исключаемом из рассмотрения в обычной термодинамике как термодинамически неравновесное. Оно может сохраняться в течение более или менее продолжительного времени, поскольку скорость возникновения новой фазы достаточно мала. Подобные состояния называются ме-тастабильными. Возникновение новой фазы в метастабильной паровой фазе происходит в форме зародышей, которые рассматриваются как маленькие капельки. Предположение, что маленькие капельки или комплексы частиц отличаются от макроскопических тел в жидком состоянии только своими размерами, не может считаться правильным [97]. В случае зародышей малых размеров в чрезвычайной степени возрастает роль поверхностной энергии и поверхностного натяжения при оценке общей и свободной энергии образуемой ими системы. Кульер в 1875 г. и Айткен в 1880 г. [98] обнаружили, что для образования облака путем адиабатического расширения влажного воздуха необходимо наличие маленьких частиц ш.ши. Если же воздух пыли не содержит, то образование облака начинается только при очень сильном расширении. [c.825]

    Реальные металлические материалы, как правило, являются по-ликристаллическими, то есть состоят из множества отдельных кристаллов, которые в общем случае имеют неправильную форму и называются кристаллитами или зернами. В отличие от идеальных кристаллов, в которых атомы кристаллической решетки расположены строго периодично, реальные кристаллы всегда имеют нарушения регулярности структуры (разупорядоченность), которые называются дефектами. Основными причинами отсутствия у реальных конструкционных металлических материалов идеального кристаллического состояния являются неравновесные условия кристаллизации металла, присутствие в его составе легирующих и примесных элементов, деформация кристаллической решетки вследствие воздействия на нее в процессе изготовления изделий механических, термических, радиационных и других факторов. [c.23]

    В работах Быковой [30], Зарифьянца и Попика [31] было показано, что обратимая физическая адсорбция молекул Оа и N0 на РЬЗ приводит к обратимым изменениям во временах жизни неравновесных носителей. Недавно Е. Н. Фигуровская обнаружила вполне измеримые обратимые изменения а для рутила при адсорбции аргона. По-видимому, возникающие при физической адсорбции небольшие поляризованные диполи в атомах аргона из-за высокого значения диэлектрической проницаемости двуокиси титана (сегнетоэлектрик) могут существенно изменить параметры близлежащих дефектов, превратив их в центры захвата. Даже в случае идеальной поверхности эти диполи могут вызвать появление в решетке локальных поляризованных областей, в которых будут нарушены периодические изменения потенциала. Из сказанного следует, что электропроводность также не является однозначным критерием химической адсорбции. Адсорбция аргона па ионном кристалле (ТЮа) является классическим примером физической адсорбцип. Однако наблюдаемая локализация носителей вблизи атомов аргона приведет к упрочению их связи с поверхностью и существенному изменению формы потенциальной кривой. [c.97]

    Если каталитически активные дефекты находятся в равновесии с решеткой, уравнения типа (VII.21) можно использовать в теории спекания катализаторов. Основное значение при этом приобретает тот факт, что лабильные равновесия такого типа, как образование дефектов в реальных кристаллах, можно наблюдать только в определенном интервале температур. Обозначим через Т и Т2 нижнюю и верхнюю границы этого интервала. При Г>Г2 = 0,ЗГпл согласно эмпирическому правилу Таммана начинается перестройка поверхности кристалла, приводящая к переходу от неравновесных к равновесным формам огранения. В уравнении (УП.21) это отвечает /2->1. Затем кристаллы укрупняются (г- -оо), чему отвечает быстрое падение равновесной доли дефектов. [c.120]

    Поскольку процесс роста — фактически неравновесный процесс, то едва ли можно когда-либо встретить равновесную форму на практике. Как показали Брандес [5] и Франк [19], разность величин поверхностной свободной энергии для формы роста и равновесной формы становится очень малой, если размеры кристаллов составляют несколько микронов. Эта разность свободной энергии соответствует пересыщению у тех граней формы роста, которые больше таких же граней равновесной формы. Когда эти грани приходят в контакт с насыщенным раствором, должен начинаться процесс их роста, так как не соблюдаются условия равновесия. Однако пересыщение при этом настолько мало, что скорость роста практически равна нулю. Форма роста в контакте с насыщенным раствором или паром при постоянной температуре и давлении не подвергается изменениям. [c.327]

    Переохлаждению противостоит обратное неравновесное явление — перегревание, обусловленное переходом температуры нагревания за точку плавления. Оно наблюдается только в силикатах и легко определяется по оптической анизотропии кристаллической фазы, нагретой до температуры выше точки плавления . Высокая вязкость жидкости при температуре равновесия — наиболее важный фактор, обеспечивающий это типичное неравновесное состояние. Оно отчетливее проявляется в тех силикатах, расплавы которых имеют наиболее высокую вязкость, как это подтвердили Дей, Аллен и Иддингс в своих исследованиях щелочных полевых шпатов и кварца. Альбит, с точкой плавления около 1Ч00°С, можно перегреть на 1Э0°С во время нагревания до 12бО°С в течение нескольких часов наблюдается лишь медленное, заторможенное плавление в виде постепенных образований изотропных участков среди остаточных анизотропных кристаллов. Чрезвычайно высокую вязкость альбита и ортоклаза в перегретом состоянии весьма убедительно можно продемонстрировать на следующем опыте образцы в форме параллелепипедов лежат свободно у отверстия платинового тигля, нагреваемого в течение трех часов до 1200— 1225°С. При [c.375]

    В связи с этим в последние годы интенсивно изучают методы получения ферритовых порошков из твердых растворов солей [55, 57—66] и гидроокисей [67—70]. Естественно, что в таких растворах, а также в продуктах их термического разложения феррито- бразующие компоненты находятся в более высокой степени смешения, чем в системе, образованной из индивидуалыШх солей. Задача сводится к тому, чтобы получить твердые растворы солей с таким же соотношением катионов, как и в феррите. Как правило, это достигается соосаждением железа с другими компонентами, входящими в состав ферритов в форме нерастворимых или малорастворимых гидроокисей, карбонатов, оксалатов. Однородность солевых твердых растворов, кристаллизующихся в сильно пересыщенной (неравновесной) системе, которая образуется при смешении раствора легкорастворимых солей ферритообразующих компонентов с осадителем (например, оксалатом, карбонатом или гидроокисью аммония), зависит от растворимости и скорости кристаллизации отдельных солевых компонентов. При значительной разности этих величин трудно ожидать получения совершенно однородных кристаллов, что и обнаруживается в действительности [71]. [c.13]


Смотреть страницы где упоминается термин Формы кристаллов неравновесные: [c.113]    [c.286]    [c.44]    [c.214]    [c.292]    [c.25]    [c.51]    [c.87]    [c.43]    [c.118]    [c.119]    [c.660]    [c.86]    [c.175]    [c.6]   
Физико-химическая кристаллография (1972) -- [ c.325 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллы форма

Неравновесные кристаллы

Неравновесный ЯЭО



© 2025 chem21.info Реклама на сайте