Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Условия, облегчающие перенос электронов

    В буферный раствор электролита ускоряет перенос электрона между гемовым центром цитохрома с и поверхностью золота. Важно подчеркнуть, что, хотя 4,4 -дипиридил значительно облегчает перенос электрона с гемового центра на золотой электрод, сам он электрохимически неактивен в представляющей интерес области потенциалов и, таким образом, явно не действует как просто переносчик электрона. Считают, что облегчение гетерогенного переноса заряда обусловлено адсорбцией 4,4 -дипиридила на поверхности электрода и быстрым обратимым связыванием цитохрома с на границе раздела модифицированный электрод/раствор. Это обеспечивает эффективное сближение белка с поверхностью электрода и правильную его ориентацию, необходимую для быстрого переноса электрона ([13], гл. 13). Важным условием считается также высокая скорость адсорбции/десорбции, иначе может произойти блокирование модифицированной межфазной границы. [c.220]


    Металлы могут участвовать как катализаторы в любой стадии окисления [103]. На стадии инициирования металлические катализаторы облегчают разложение гидропероксидов в тех случаях, когда образовавшиеся гидропероксиды оказываются стабильными и неспособными спонтанно разлагаться при данных температурных условиях. В этих системах возможны различные варианты взаимодействия металла с окисленным углеводородом. В некоторых, относительно редких случаях возможен прямой перенос электронов от углеводорода к металлу [c.78]

    Исследования электрической проводимости растворов, а также изучение спектров ЭПР показало, что в системах типа ионы — растворитель наряду со свободными ионами существуют и ионные пары , которые движутся как одно целое и не дают вклада в проводимость. Представление о ионных парах в 1924 г. были выдвинуты В. К. Семеновым и в 1926 г. Бренстедом. Одно из первых наблюдений, подтвердивших теорию ионных пар, было сделано Крауссом, обнаружившим, что хлорид натрия в жидком аммиаке сравнительно слабо проводит ток. Бьеррум указал, что, увеличивая расстояние между ионами, можно определить некоторое критическое его значение, такое, что ионы, удаленные на расстояние, большее критического, почти свободны, а ионы, находящиеся друг от друга на меньшем расстоянии, связаны. В настоящее время ионные пары рассматривают как частицы, обладающие совокупностью индивидуальных физико-химических свойств, находящиеся в термодинамическом равновесии со свободными ионами. Энергия связи в ионных парах в основном электростатическая, хотя дипольные и дисперсионные силы также вносят некоторый вклад в энергию взаимодействия. Несомненно и то, что свободные ионы в общем случае нарушают структуру растворителя, в результате чего достигается дополнительная стабилизация ионных пар. Если исходные молекулы растворяемого вещества содержат ковалентные связи А В, то образование ионной пары А+, В- может стимулироваться действием растворителя стабилизация пары достигается за счет энергии ее сольватации. Важную роль при этом играет способность молекул растворителя проявлять донорно-акцепторные свойства. Так, перенос электронного заряда на А, естественно, облегчает перенос а-электрона от А к В, что создает условия для гетеролитического разрыва связи А В и способствует возникновению ионной пары. Этот вопрос в более широком плане обсуждается в концепции, развитой В. Гутманом. [c.259]


    Таким образом, различными методами показано, что шпинели отличаются от других оксидов легкостью перестройки структуры, наличием в ней дефектов и особым механизмом электронного обмена- перескока электронов между соседними ионами. Эти свойства и приводят к повышенной активности шпинелей в окислительных реакциях. В окислении углеводородов особенно активны шпинели, содержащие ион кобальта. Трехвалентный кобальт в октаэдре находится в сильном поле лигандов (конфигурация и имеет максимальную энергию стабилизации кристаллическим полем. При переносе электрона в результате окислительно-восстановительного процесса (такой перенос может быть облегчен благодаря присутствию в системе другого катиона переходного металла) Со переходит в Со. После осуществления каталитического цикла система воз-. вращается в устойчивое состояние Со [26, с. 120-124]. Электронный обмен между ионами Со по механизму перескока позволяет передать заряд адсорбированной молекуле кислорода, превратить ее в активный ион-радикал. Условия быстрого подвода кислорода облегчены на поверхности катализатора, способного быстро перестраивать поверхностный слой с сохранением объема катализатора в устойчивом состоянии. Эти условия осуществляются в шпинелях, содержащих ион Со, в которых, как указано выше, энергия разупорядочения в объеме относительно невелика (см. табл. 2.8), а на поверхности должна быть еще меньше. [c.58]

    На основе приведенной выше качественной картины можно сделать некоторые выводы. Величина взаимодействия должна в большой степени зависеть от перекрывания орбиталей, поскольку в этих условиях облегчается перенос электрона между двумя атомами. Так как в результате одноэлектронного переноса происходит спаривание спинов электронов, находящихся на Зй -орбиталях, которые в значительной степени перекрываются с единственной р-орбиталью, можно ожидать, что сверхобмен будет максимальным, когда система металл — анион — металл расположена вдоль одной прямой (конфигурация 180°). Однако такое условие не является строго обязательным. так как за счет перекрывания й у-орбитали металла с -орбиталью аниона, максимум которого достигается при расположении связей под углом 90°, может осуществиться взаимодействие, сравнимое с вышеуказанными. Кроме того, необходимо также учитывать возможное участие в таком процессе 5-орбиталей анионов [34]. [c.314]

    В этом уравнении ВН+ и АН — кислотные компоненты раствора В и А" — сопряженные с ними основания р — константа скорости протонизации ра — константа скорости обратной реакции (депротонизации). При необратимых процессах электрохимического восстановления электростатические факторы облегчают перенос электронов с катода на кислотные формы деполяризатора, которые всегда имеют более положительный заряд по сравнению с основными формами того же деполяризатора. Если обе формы депо.ляризатора способны участвовать в электрохимической реакции, то восстановление кислотной формы при прочих равных условиях протекает при более положительных (на 0,2— 0,4 в) потенциалах, чем восстановление основной формы. Это наблюдается, например, при восстановлении на ртутном капельном электроде катионных (иротонированных по атому азота) форм изомерных пиридинальдегидов [126] и -иоданилина [127] и их незаряженных форм. Точно так же анионы многих органических кислот восстанавливаются значительно труднее, чем недис-социированные молекулы тех же кислот [128]. [c.44]

    М. к. позволяет осуществить р-ции многоэлектронного окисления и восстановления, в к-рых молекула субстрата в координац. сфере сразу принимает или отдает неск. электронов. При этом облегчаются процессы, в к-рых последоват. перенос электронов затруднен из-за термодинамич. трудностей одно- или двухэлектронных стадий. Особенно благоприятны условия для таких р-ций в случае многоядерных комплексов-кластеров, способных как к одноэлектронному окислению (восстановлению) при взаимод. с реагентом, так и послед, л-электронному окислению (восстановлению) субстрата. [c.43]

    При ЭТОМ электрон переходит от катализатора к молекуле НСООН. Естественно, что повыщение концентрации электронов проводимости в катализаторе должно облегчать эту стадию реакции. Таким образом, по мнению авторов [132], перенос электронов от носителя к металлу является очень важным фактором в катализе. Несмотря на то, что в целом рассматриваемая работа является хорошо задуманным и оригинальным физико-химическим исследованием, анализ ее результатов обнаруживает ряд слабых мест. Начать с того, что, как справедливо отмечают сами авторы [132], необходимым условием электронного взаимодействия на поверхности раздела металл—носитель является значительная величина этой поверхности, т. е. малый размер частиц металла. Это условие в работе, по-видимому, не выполняется, так как германиевые носители имеют очень малую поверхность (600—1100 сж /г) и трудно предположить, что никель остается на них в виде мелких кристаллов. Каталитическая активность отнесена к 1 м общей поверхности, а не к 1 поверхности активной фазы, которая, по-видимому, уменьшается с увеличением толщины покрытия, поэтому заключение об увеличении активности с увеличением числа нанесенных слоев не кажется убедительным. Кроме того, изменение каталитической активности всего в 3 раза часто рассматривается как ее постоянство 1134, 135]. Далее известно, что объемные свойства германия сильно отличаются от свойств его поверхности, которую можно рассматривать как квазиизолированную . Поэтому характеристика электронных свойств германия [136, 137], чистого и содержащего легирующие добавки, по результатам эффекта Холла в соответствующих монокристаллах, может не иметь [c.49]


    Первичный хинон Qa — одноэлектронный переносчик, хотя в определенных условиях он присоединяет два электрона. Вторичный хинон Qb в отличие от Qa в обычных условиях может функционировать как двухэлектронный переносчик. Fe входит в состав комплекса QaQb, который можно схематически представить как Qa qQb- Измерение спектров эффекта Мессбауэра показало, что Fe не меняют свою валентность и остается в высокоспиновом Ре -состоянии независимо от переноса электрона в акцепторном хинонном комплексе. Однако удаление Fe нарушает перенос электрона между Qa t Qb- Очевидно, сам атом железа не является акцептором электрона, а только облегчает его перенос между первичным и вторичным хинонами. [c.311]

    Как видно из рассмотренных работ, данные о нуклеофильном десульфировании тирранов немногочисленны. Однако даже известных сведений достаточно, чтобы заметить, что легче всего в зти превраш ения вступают соединения, характеризуюш,иеся низкой термической стабильностью. Обычные нуклеофильные агенты, как и ультрафиолетовое облучение, облегчают процесс раскрытия связи С—3, ослабленной эффектами включения 2р-электронов углеродных атомов цикла в я-сопряженные системы. Все это свидетельствует о том, что инициируемое нуклеофильными агентами десульфирование тииранов протекает по гомолитическому механизму. Гомолиз гетеросвязи, наиболее вероятно, осуществляется через переходный ЭДА-комплекс гел- или сгл-типа в условиях, препятствующих переносу злектрона от донора на л -орбиталь цикла. [c.285]

    Существует несколько условий, облегчающих миграцию электронов от одной химической группировки к другой. Если электрон может свободно перемещаться внутри большой молекулярной орбитали высокорезонансной структуры, его связь с любым отдельным атомным ядром в пределах этой структуры будет слабее, чем если бы его перемещение было ограничено маленькой орбита аью вокруг определенного ядра. Так, катионы металлов, участвующие в переносе электронов в биологических системах, бывают обычно окружены большими резонансными лигандами, облегчающими быстрый перенос электронов. Отрицательный заряд этой резонансной структуры, отталкивая электрон, также способствует его потере. Поэтому фенолят-анион легче окисляется по сравнению с фенолом. Перенос электронов между одинаково заряженными частицами, например между катионами металлов, часто облегчается противоположно заряженными лигандами, которые функционируют в качестве мостиков, проводящих электроны. Так, в небиологпческой системе, например при восстановлении комплексов трехвалентного кобальта нонами двухвалентного хрома, множество анионов облег- [c.331]

    Подобные измерения могут быть произведены в присутствии других соединений, не поглощающих свет той же длины волны с той же самой интенсивностью. Практически последнее условие совершенно не ограничивает применение метода, и, кроме использования в обычном количественном анализе, спектрофотометрня применяется при изучении скоростей химических реакций и для измерения констант равновесия процессов ионизации, таутомери-зации и переноса заряда. Будучи основано на эмпирическом правиле, использование спектроскопии не требует знания природы электронного перехода, вызывающего ту или иную изучаемую полосу поглощения, однако теория может явиться основной для расширения областей применения или облегчить интерпретацию полученных данных, например в случае исследования явления переноса заряда. [c.320]


Смотреть страницы где упоминается термин Условия, облегчающие перенос электронов: [c.128]    [c.399]    [c.104]    [c.119]   
Смотреть главы в:

Основы биохимии в 3-х томах Т 1 -> Условия, облегчающие перенос электронов




ПОИСК





Смотрите так же термины и статьи:

Облегченная



© 2025 chem21.info Реклама на сайте