Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механические потери максимумы

    Некоторые данные динамических механических потерь представлены на рис. 8.44. а- и р-максимумы релаксационных потерь при низких температурах для утомленных образцов сравнивались с соответствующими максимумами исходных образцов. Во всех случаях образцы, утомленные при большом числе циклов воздействия (>2000 циклов нагружения при напряжении Смакс/Су > 0,56), разрушались во время динамических испытаний. [c.299]


    Процесс наблюдается только в присутствии в полимере активного наполнителя. Для полимеров, указанных в табл. I. 1, время релаксации -процесса при 20 °С равно величине порядка 1 с. Отчетливо наблюдается соответствующий максимум механических потерь. Считается, что этот максимум связан с изменением сегментальной подвижности в адсорбционном (граничном) слое полимера, поэтому энергия активации данного процесса выше, чем процесса стеклования. -Процесс происходит без перестройки в целом сажевой структурной пространственной сетки, так как частицы сажи проявляют подвижность при более высоких температурах и больших временах наблюдения. [c.63]

    Переход от упругой деформации к высокоэластической у полимеров сопровождается прохождением кривой механических потерь через максимум (рис. 2.7), поэтому Гм определяется как температура, которой соответствует максимум механических потерь [2.4]. [c.43]

Рис. 2.10. Зависимость от линейной частоты деформации обратной температуры соответствующей максимуму механических потерь (/) и температуры (2), опреде- Рис. 2.10. Зависимость от <a href="/info/570785">линейной частоты</a> <a href="/info/929800">деформации обратной</a> <a href="/info/1793041">температуры соответствующей</a> <a href="/info/315322">максимуму механических потерь</a> (/) и температуры (2), опреде-
    Механическое стеклование определяется частотой или временем механического воздействия, а структурное — тепловым режимом (скоростью охлаждения). Опыт показывает, что оба процесса стеклования независимы и их можно экспериментально разделить. Значение Тм соответствует максимуму механических потерь (см.. рис. 2.7), а Тс Р — точке излома на кривой тепловой усадки (см. рис. 2.5). Если тепловой режим охлаждения задан, то тем самым задана Тс р. При этом механическое воздействие может производиться независимо от теплового. Меняя режим механического воздействия, можно получать различные Тс . И наоборот, меняя скорость охлаждения, можно наблюдать различные Те при постоянной температуре механического стеклования, если задана частота внешнего воздействия. Например, эластомер НК (натуральный каучук) при медленном охлаждении со скоростью т= 1 К/мин стеклуется при температуре — 200 К. Выше этой температуры структура полимера является равновесной, что соответствует жидкому состоянию. Подвергая НК выше этой температуры механическим воз- [c.46]


    Для разных эластомеров на температурной зависимости механических потерь наблюдаются максимумы, соответствующие у-, р-, а- и Л-процессам релаксации. Установить природу Я-процессов, обычно проявляющихся на дискретных релаксационных спектрах (см. рис. 5.1, 5.5 и 5.6), можно лишь использовав независимые методы и в первую очередь метод внутреннего трения. Тщательные исследования температурно-частотных зависимостей механических потерь эластомеров показали, что на температурной зависимости фактора их механических потерь при Т>Тс наблюдается несколько. максимумов, меньших по высоте, чем а-максимум, проявляющийся в области механического стеклования при Тм- При этом проявляются три максимума, температурное положение которых (значения Т ) может быть рассчитано, напрпмер, для каждого Я-процесса из уравнения (5.6) с учетом формулы (5.2), и для каждого времени т,-методами релаксационной спектрометрии могут быть определены величины и В . Расчет значений Г, из спектров дает хорошее согласие с экспериментально наблюдаемыми при исследованиях методом внутреннего трения температурами релаксационных переходов [7]. [c.135]

    Отдельным релаксационным процессам соответствуют более или менее четко выраженные максимумы механических потерь [c.139]

    ПММА 120° С) проходит через максимум. Наличие этого максимума, находящегося в температурном интервале стеклования, показывает, что термическое разрушение остаточной поляризации, образовавшейся в ПММА, непосредственно связано с сегментальной формой теплового движения в полимере [65]. Известно, что в том же температурном интервале (рис. 7.14) находятся и максимумы диэлектрических и механических потерь ПММА (а-процессы). Они также связываются с сегментальной подвижностью в полимере, проявляющейся в условиях действия переменных механических и электрических полей. Расхождение в значениях энергий активации для процесса а-релаксации в ПММА, полученных методом термодеполяризации и методом диэлектрических потерь, могут быть объяснены спецификой обоих методов и особенностями молекулярного движения в полимере при температурах выше и ниже 7 с. Из данных рис. 7.15 видно, что разные физические методы позволяют фиксировать проявление одних и тех же процессов молекулярной подвижности в полимерах в различных температурно-частотных диапазонах, т. е. дают взаимодополняющую информацию. [c.199]

    При скольжении полимерного образца со скоростью 1 мм/мин шероховатости его поверхности испытывают деформацию сжатия с частотой 100 МИН . Из рис. 13.5 видно, что низкотемпературный максимум механических потерь наблюдается примерно при той же температуре, что и максимум силы трения. [c.366]

    Термомеханические кривые. По кривой, полученной в координатах механические свойства — температура, находят температуру механического стеклования, которая зависит от времени действия силы. Так, Гс натурального каучука равна —56° при частоте действия силы (о==0,167 С и —14° при со = 2-10 = с . Установлено, однако, что если время действия силы не выходит за пределы от нескольких секунд до десятков минут, то значение Те практически совпадает с температурой структурного стеклования. Учитывая, что точность определения температуры стеклования часто составляет (0,5—Г), временные интервалы действия силы можно еще более увеличить без заметного изменения значения Гс.. Термомеханический метод определения Гс наиболее широко распространен благодаря его простоте. Определяют зависимость от температуры разных механических показателей, таких, как модуль, деформация, твердость, податливость, тангенс угла механических потерь. Последний особенно предпочтителен, поскольку зависимость —Г выражается кривой с максимумом, по которому можно более точно определить Тг, чем по другим термомеханическим кривым, на которых в точке стеклования наблюдается перегиб. [c.145]

    В этих случаях на температурной зависимости тангенса угла механических потерь tg 5 наблюдается два отчетливо выраженных максимума. [c.286]

    Возбуждение сегментов электрическим полем происходит труднее, так как электрические силы действуют только на полярные участки сегмента. Б этом основная причина, что а-максимум механических потерь находится ниже а-максимума диэлектрических потерь. В тех случаях, когда полярность сегмента на всех участках одинакова (как для полярных, так и для слабополярных полимеров), температуры в механических и диэлектрических полях совпадают, а высота а-максимумов в электрических полях различна в зависимости от степени полярности полимеров. [c.245]

Таблица 1.2. Температуры релаксационных переходов и механические потери ПОЭ (Гмакс температура максимума потерь) при частоте 0,1 Гц [/3] Таблица 1.2. <a href="/info/1576244">Температуры релаксационных переходов</a> и <a href="/info/21906">механические потери</a> ПОЭ (<a href="/info/1588899">Гмакс</a> <a href="/info/315322">температура максимума потерь</a>) при частоте 0,1 Гц [/3]

    Здесь под переходом подразумевается просто появление максимума диэлектрических или механических потерь в определенной температурной области. Подробнее относительно терминологии см. [57]. [c.13]

    Введение наполнителя уменьшает величину максимума тангенса угла механических потерь tgб эластомера, тогда как сам пик б при этом становится более размытым, что связано с большей величиной потерь у наполненных эластомеров в сравнении с ненаполненными. [c.140]

    Существенно было исследовать также влияние концентрации наполнителя на среднее время релаксации полимерной матрицы в наполненном материале. Для этой цели была построена обобщенная зависимость тангенса угла механических потерь от частоты (рис. 111.38). С ростом концентрации наполнителя максимум механических потерь сдвигается в сторону более низких частот так как время релаксации т = 1/(0т (где сот — частота, отвечающая максимуму потерь), то можно вычислить зависимость 1 т = /(Ф) (рис. 111.39). Эта зависимость близка к линейной, что указывает на экспоненциальную зависимость времен релаксации от концентрации наполнителя. Это позволяет прийти к заключению о существовании в наполненных полимерах суперпозиции концентрация наполнителя — время. Действительно, характерная форма и положение кривых 1 С = /(1дю) при разных Ф (рис. 1.11.40) позволяют считать, что к этим системам применим метод ВЛФ. Сделав приведение к наинизшей концентрации наполнителя и вводя кон- [c.145]

    На рис. III. 48 представлены отношения D1/D2 для разных температур, причем в качестве основы для сравнения были взяты размеры частиц с поверхностным слоем при 90 °С. На построенной зависимости в области, в которой наблюдается максимум механических потерь, также обнаруживается максимум. Такое совпадение связано с тем, что при этой температуре время проведения эксперимента сопоставимо со средним временем релаксации полимерной матрицы. (Выше уже отмечалось, что толщина поверхностного слоя зависит от частоты воздействия.) При температуре, соответствующей максимуму механических потерь, времена релаксации в поверхностном слое больше характерного времени экспериментальной шкалы, поэтому этот слой не может существенно деформироваться. В то же время на больших удалениях от границы раздела фаз времена релаксации полимера сопоставимы с временем воздействия, и поэтому общая деформация материала определяется деформацией этих более удаленных слоев. [c.148]

    Для тех же образцов ЭД-20, наполненных ПС, были получены температурные зависимости тангенса угла механических потерь области температуры стеклования полимерной матрицы (рис. V. 27), Как видно из рисунка, повышение концентрации полимерного наполнителя сдвигает максимум потерь в сторону низких температур. Это свидетельствует о том, что в образцах с большей степенью наполнения межмолекулярное взаимодействие ослабляется. Это может быть следствием более рыхлой упаковки сегментов в граничном слое. [c.231]

    Температура максимума тангенса угла механических потерь. .  [c.306]

    Отклонения от этой схемы связаны либо с молекулярной структурой (громоздкие боковые цепные группы ПММА), либо с максимумами механических потерь (ПЭТФ, ПЭВП, ПК, поли-(2,6-диметил-1,4-фенилен оксид)), либо с морфологией образца (ПП, полученный инжекцией расплава), либо с гетерогенностью усиленного материала после введения наполнителей (короткое стекловолокно, специальные наполнители). [c.410]

    Переход от упругой деформации к высокоэластической у полимеров сопровождается возрастанием механических потерь и прохождением их через максимум (рис. II. 12). В соответствии с этим температура механического стеклования Ти. с определяется как температура, которой соответствует максимум механических потерь. Ее следует рассматривать как температуру, при которой практически перестает проявляться высокоэластичность.. Амплитуда деформации не влияет На Гм. с, так как по условию деформация достаточно мала. При больших напряжениях и деформациях у полимеров возникакзт качественно новые явления (вынужденноэластические деформации и разрушение). Закономерности, аналогичные представленным на рис. II. 11 и II. 12, наблюдаются, как было отмечено выше, при действии на полимеры переменных электрических полей. В этом случае роль модуля упругости играет диэлектрическая проницаемость, а механических потерь — диэлектрические потери. Электрические, поля действуют на те структурные [c.97]

    Весьма чувствительны к релаксационным переходам методы внутреннего трения и термомеханических кривых, а также реологические методы. Наблюдаемые при периодических деформациях механические потери характеризуют внутреннее трение в полимерах. Так, на температурной зависимости коэффициента механических потерь на диффузный фон (или уровень потерь) накладываются отдельные максимумы внутреннего трения. Каждый максимум потерь свидетельствует о существовании отдельного релаксационного механизма с наивероятнейшим временем тг, которое может быть рассчитано из соотношения вида [c.133]

    В случае гладкой поверхности появление волн отделения приводит к износу полимера посредством скатывания его поверхностного слоя, тогда как в случае шероховатой поверхности имеет место преимущественно абразивный износ [13.5]. В случае гистере-зисного механизма внешнего трения (т. е. при наличии механических потерь) при деформации шероховатостей наблюдается усталостный износ полимеров. Следует отметить, что последний вид износа не является интенсивным как абразивный и изделие из полимера сохраняет работоспособность в течение длительного времени. Абразивный износ является весьма интенсивным, и полимер быстро теряет свою работоспособность. Когда полимер перемещается по грубой шероховатой поверхности, то адгезия и гистерезис приводят соответственно к абразивному и усталостному износу. Для эластомеров с повышенными твердостью и сопротивлением раздиру волны отделения и износ посредством скатывания не имеют места. На температурных и временных зависимостях максимумы силы трения соответствуют минимумам износа (или истирания) полимеров. [c.362]

    Природа низкотемпературного максимума силы трения объясняется существованием максимума механических потерь, так как роль гистерезисных потерь при трении полимера в стеклообразном состоянии возрастает. При переходе полимеров из стеклообразного в высокоэластическое состояние изменяется молекулярный механизм трения, связанного с механическими потерями в объеме, что приводит к появлению резко выраженного максимума. Природа этого явления состоит в следующем. Упругие свойства полимеров в высокоэластическом состоянии практически не изменяются (т. е. модуль упругости onst), поэтому 5ф при постоянной нагрузке остается практически постоянной. При возрастании модуля упругости в результате понижения температуры 5ф резко уменьшается [c.365]

    При переходе из высокоэластического состояния в стеклообразное происходит замена одного молекулярного механизма трения другим. В стеклообразном состоянии сила трения образуется из вкладов взаимосвязанных адгезионной и объемно-механической-составляющих. Чем больше адгезионная составляющая, тем больше и объемно-механические потери, которые связаны с внутренним трением в самом полимере. Низкотемпературный максимум при температуре Гм2 существенно связан с механическими потерями в самом полимере, так как при многократных деформациях при этой же температуре наблюдается максимум потерь, связанный с замораживанием подвижности малых участков полимерных цепей. При исследовании фрикционных свойств эластомеров в атмосфере при повышенных температурах на кривой р= Т) (рис. 13.12) появляется еще высокотемпературный максимум, связанный с ин--тенсификацией процессов окисления поверхностных слоев. [c.376]

    В стеклообразном состоянии величины ео и sin ф близки к нулю,, а следовательно, и потери работы деформации за цикл также близки к нулю. В развитом высокоэластическом состоянии ео достигает максимума, но значение sin ф близко к нулю (так как ф близко к нулю), а следовательно, и потери за цикл также незначительны. Таким образом, и частотная, и температурная зависимость механических потерь за цикл проходят через максимум, лежащий в области частот и температур промежуточных между частотами и температурами стеклообразного и развитого высокоэлз стического состояния. [c.151]

    На рис, 80 показана температурная зависимость тангенса угла механических потерь tg S для блочных образцов рассматриваемых полиизоциану ра-тов с различной длиной межузловых кремнийорганических фрагментов. Низкотемпературный пик смещается в сторону низких температур при увеличении дайны межузлового фрагмента, приближаясь к Tg полидиметилсилоксана. Высокотемпературный максимум, связанный с расстекловыванием системы в целом, практически не завис[гг от величины п, начиная с п = 2. [c.286]

    Данные приведены для полибутадиен (матрица)—полисти-рольной пластинчатой (тип 3, рис. 11.4) суперрешетки так же выглядят они и для цилиндрической (тип 2). Видно, что максимумы механических потерь для обоих компонентов находятся на положенных им местах, т. е. вблизи Тст каждого из компонентов, и вся картина мало чем отличается от картины для смесей — разве что большей размазанностью высокотемпературного (полистирольного) пика. Размазанность эту можно увеличить, вводя между чистыми блоками А и В спейсер из статистического сополимера АВ. Картина выродится в седло, но о суперрешетке как таковой эти опыты ничего не говорят. А значит, для демпфирования механических или звуковых колебаний суперрешетка сама по себе ничего не дает, чего, впрочем, и следовало ожидать. [c.83]

    Для сшитых эластомеров о к2-10- МПа, а вэл 5— ЮМПа, поэтому С, 15—20. Эксперимент [138] дает для максимума механических потерь в области стеклования эластомеров С 10. Это значение обычно и применяется в релаксационной спектрометрии полимеров. [c.219]

    Зависимости tg б от Г при v = onst или от v при Т = onst называют спектрами диэлектрических потерь. Максимумы на этих зависимостях отвечают релаксационным переходам с временами релаксации т,- (1=1, 2,. .., п). Максимумы, как и в случае механических потерь, наблюдаются при условии [c.238]

    Релаксационные своххства полиокса исследованы методами ЯМР, диэлектрических и механических потерь [1.50, 151]. В низкотемпературной области все методы приводят к близким зиаченням для максимума потерь около —55 °С прп частоте 1 Гц [150] частота этого максимума растет с температурой, как обычно, экспоненциально, энергия активации составляет 250—290 кДж/моль (60— 70 ккал/моль). [c.273]

    В большинстве случаев трехмерный аморфный полимер можно рассматривать как застеклованную жидкость, т. е. структура полимера соответствует в значительной мере структуре расплава перед гелеобразованием, так как после перехода полимера р стеклообразное состояние выделение частиц новой фазы невозможно. Вероятно, разделение фаз может наблюдаться в некоторой степени и в течение определенного времени после гелеобра-зования, пока температура стеклования отверждающейся системы выше температуры отверждения и полимер имеет студнеобразную консистенцию с малым модулем упругости. Процесс образования новых фаз в таких системах подобен ликвидации в силикатных стеклах [85]. Разделение фаз может быть обнаружено не только микроскопически, но и другими методами, например по появлению новых максимумов на кривых температурной зависимости механических потерь (рис. 3.4). [c.61]

    Для эпоксидно-фенольных композиций характерно небольшгм снижение модуля сдвига при нагревании и отсутствие отчетлив выраженного максимума на кривой температурной зависимост 1 тангенса угла механических потерь [92]. При нагревании от вержденных композиций выше Тс не наблюдается заметного увс личения деформации полимера при нагружении из-за высоко жесткости пространственной сетки. [c.140]

    По данным различных авторов , величина энергии разрушения э при 20 °С для полиметилметакрилата примерно равна 5-10 эрг/см и для полистирола 9-10 эрг/см , что превыщает свободную поверхностную энергию почти на четыре порядка. Кроме того, Боргвардт при ударных, а Свенсен при медленных разрущениях полимеров обнаружили максимумы на кривых температурных зависимостей энергии разрушения. Эти максимумы связаны с механическими потерями, наблюдаемыми при переходе полимеров из стеклообразного в высокоэластическое состояние. Это подтверждается сдвигом тех и других максимумов в сторону высоких температур при увеличении скорости разрушения. [c.26]

    По данным Зеленева [107] для вулканизатов с полисулъ-фидными связями характерно появление высокотемпературного максимума механических потерь, обязанного разрушению этих связей при нагружении. В вулканизатах с связями —С—С— и —С—S—С— такой максимум не проявляется. Куперман и Кармин [108] установили, что распад солевых связей в вулканизатах карбоксилсодержащего каучука способствует повышению внутреннего трения. [c.104]

    Общие особенности конструкций. Метод свободнозатухающих колебаний, как правило, реализуется в виде крутильных (торсионных) маятников, которые широко вошли в практику исследований полимеров, начиная с работ Л. Нильсена (1951 г.) и К- Шмайдера и К. Вольфа (1952 г.). Эти приборы используются не только для измерений абсолютных значений параметров механических свойств пластмасс, но и в значительно большей степени для сравнительных испытаний и определения областей релаксационных переходов по температурной шкале, которым отвечают максимумы механических потерь или tgo. [c.175]


Смотреть страницы где упоминается термин Механические потери максимумы: [c.60]    [c.260]    [c.292]    [c.366]    [c.211]    [c.222]    [c.225]    [c.244]    [c.245]    [c.25]    [c.219]    [c.134]    [c.138]    [c.228]   
Структура и механические свойства полимеров Изд 2 (1972) -- [ c.147 , c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Потери механические



© 2025 chem21.info Реклама на сайте