Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность контакта v скорости газа

    Рассмотрим в качестве примера абсорбции в диффузионной области улавливание бензола из коксового газа при его переработке. Абсорбция бензола поглотительным маслом (каменноугольным или соляровым) не сопровождается химическими реакциями. Система бензол—поглотительное масло относится к хорошо растворимым газам и скорость абсорбции бензола мало зависит от параметров жидкой фазы. Этот процесс можно интенсифицировать развитием поверхности контакта коксового газа и поглотительного масла и турбулизацией газового потока. Кроме того, процесс следует вести при возможно более низкой температуре для понижения равновесной упругости паров бензола над его раствором в поглотительном масле. Схема абсорбции бензола маслами и регенерации поглотителя изображена на рис. 53. [c.172]


    Агрегатное состояние реагирующих и образующихся при реакции веществ является основным фактором, определяющим тип аппарата в целом. При синтезе присадок практически возможны следующие системы взаимодействия реагентов газ — жидкость, жидкость — жидкость и жидкость — твердое вещество. Взаимодействие газа и жидкости протекает тем активнее, чем больше поверхность их соприкосновения и чем эффективнее газ распределяется в жидкости. Скорость поглощения газа жидкостью увеличивается также при повышении давления системы. Одним из методов создания максимальной поверхности контакта в периодических аппаратах является перемешивание, которое получило наиболее широкое распространение в процессах производства присадок. В системах жидкость — жидкость взаимодействие компонентов ускоряется в результате развития поверхности массообмена реагирующих жидкостей и увеличения скорости перемещения одной жидкости относительно другой. Наиболее развитая поверхность массообмена и теплообмена образуется при пленочном движении жидкости, поэтому создание пленочного движения жидкости следует рассматривать как важнейший путь интенсификации процесса. При взаимодействии несмешивающихся жидкостей или жидкостей и твердых веществ хорошее контактирование является также одним из важнейших факторов. Интенсивность контакта зависит от консистенции реагирующих веществ. [c.221]

    П. Процесс теплоотдачи от шара в слое к газовому потоку — внешняя задача теплообмена. В отличие от обтекания одиночных тел в данном случае на формирование пограничного слоя влияют соседние шары. Они разбивают пространство вокруг шара на" отдельные зоны, дробят поток на струи, создают вихревые зоны в кормовых областях. Чем плотнее укладка шаров, тем больше число контактов каждого шара с соседними и тем сильнее выражено влияние последних, приводящие к уменьшению средней толщины пограничных слоев. Следовательно, порозность влияет не только на скорости газа в слое, но и на толщину пограничных слоев, образующихся на поверхности шаров. Поэтому эквивалентный диаметр для зернистого слоя э = 4е/а может служить геометрическим масштабом процесса теплоотдачи шаров в слое и характеризовать среднюю толщину пограничных слоев. В данном случае использования э при больших Кеэ не связано с рассмотрением течения газа в слое как внутренней задачи движения по ряду криволинейных каналов, а означает только, что определяющий размер для зернистого слоя не равен размеру его элементов, а зависит от геометрии свободных зон между ними. [c.151]


    Струйные тарелки (рис. 18) создают направленное движение жидкости и хорошо работают при высоких жидкостных нагрузках. При невысоких скоростях газа (пара) тарелки работают в барботажном режиме, кроме того, при малых скоростях пара наблюдается провал жидкости. Минимально допустимая скорость по газу в отверстиях чешуек составляет 7 м/с. При повышении скорости барботажный режим переходит в струйный (капельный), при этом сплошной фазой становится газ (пар), а жидкость распыляется на капли. Этот режим отвечает наибольшей поверхности контакта фаз и является рабочей областью, скорость пара в отверстиях при этом выше 12 м/с. Тарелки рекомендуются для разделения загрязняющих сред. Ы [c.64]

    В каталитических окислительных нейтрализаторах с катализаторами из благородных металлов — платины, платины и палладия, платины и родия — обеспечивается высокая скорость окисления при сравнительно невысоких температурах, значительно меньших, чем в термическом нейтрализаторе. Оксид углерода окисляется в СО при 250—300°С, углеводороды и продукты их окисления (в том числе и бензпирен) — при 400—450°С при этом у выпускных газов почти пропадает неприятный запах. При температуре 580°С сгорает сажа. Для увеличения поверхности контакта с газами катализатор наносится тонким слоем на поверхности носителя из кремнезема или глинозема в виде шариков-или на поверхность монолитного носителя с ячейками. В случае использования этилированного бензина активность платины и палладия быстро падает из-за отложений продуктов окисления свинца. [c.335]

    Если не созданы благоприятные условия для контактирования газа с жидкостью, то скорость реакции почти полностью может определяться скоростью растворения водорода в жидкости. Такой случай является довольно обычным при гидрировании в автоклавах с мешалками, если водород вводят над поверхностью жидкости. При этом добавка катализатора дает незначительный эффект. На рис. П-3 скорости реакции, соответствующие пересечению с осью ординат, относятся к области незначительного влияния загрузки катализатора. Здесь скорость реакции, отнесенная к единице объема, приблизительно пропорциональна отношению поверхности контакта между газом и жидкостью к объему жидкости. [c.122]

    Важной характеристикой барботажного слоя является зависимость удельной объемной межфазной поверхности от скорости газа. В случае отсутствия вибраций, как и в работе [86, 88], при малых скоростях газа наблюдается незначительный рост а с увеличением скорости газа а Такое незначительное влияние скорости газа объясняется спокойным режимом барботажа. Как уже отмечалось, при этом режиме пузырьки газа почти без изменений размера проходят всю высоту секции. Судя по кривой распределения поверхности по сечениям газожидкостного слоя, около нижней тарелки, а особенно около верхней, удельная объемная поверхность несколько больше, чем в середине слоя. Из-за этого повышение скорости газа слабо сказывается на увеличении средней поверхности контакта фаз в секции.. [c.94]

    Рассмотрим вариант осуществления процесса при положительных температурах. В этом случае катализатор растворяется в подходящем растворителе (алифатическом, циклическом или ароматическом углеводороде, производных углеводородов, простых и сложных эфирах и других кислородсодержащих соединениях и т. п.). Смесь быстро перемешивается для создания максимальной поверхности контакта с газом. Формальдегид подается непосредственно в жидкую фазу или на поверхность раздела фаз. Хотя предельная растворимость формальдегида в неполярных и малополярных средах при комнатной температуре невелика (около 1 вес. %), за счет увеличения поверхности контакта при эффективном перемешивании удается достигнуть высоких скоростей превращения. [c.204]

    Горячие газы из топки поступают в камеру крепкой кислоты по двум трубам из кислотоупорного кремнистого чугуна. Нижние концы этих труб опущены в кислоту, а потому их называют барботажными. Выходя из труб с большой скоростью, эти два газовых потока приводят жидкость в интенсивное движение и перемешивают ее. В зоне барботажа жидкость вспенивается, образуется много капель, и создается весьма развитая поверхность контакта между газом и жидкостью. Благодаря этому гетерогенные процессы тепло- и массопередачи протекают чрезвычайно интенсивно. Здесь практически достигается уравнивание температур газа и жидкости—на выходе из камеры температура их одинаковая. [c.154]

    Из данных, приведенных в таблице, видно также, что в случае растворения хлористого водорода расчетная скорость несколько повышается с температурой за счет увеличения поверхности контакта фаз газ — жидкость, а фактическая скорость, наоборот, понижается. Такое расхождение объясняется тем, что при определении скорости расчетным путем не учитывается возможность комплексо-образования при растворении хлористого водорода. [c.176]


    В рассматриваемых аппаратах объем, занимаемый газожидкостной смесью, можно разделить на две области. В активной области А диспергирование газа происходит за счет кинетической энергии струи жидкости. При высокой скорости диссипации энергии в обьеме активной области пузырьки газа могут достигать размеров 1 мм. Соответственно в этой зоне апп ата образуется система пузырей с большой удельной площадью поверхности контакта фаз газ - жидкость. [c.640]

    В соответствии с рассмотренным химизмом наиболее медленными стадиями, определяющими скорость процесса, в зависимости от условий хлорирования могут быть либо процесс абсорбции хлора расплавом, либо адсорбции хлора углем или взаимодействие сорбированного хлора с растворенным фосфатом. На скорость процесса влияют многие факторы поверхность контакта фаз газ расплав и восстановитель расплав, концентрация фосфатов в расплаве и физические свойства расплава. [c.153]

    Таким образом, выход выделяемого препаративной хроматографией продукта, кроме факторов, связанных с самим процессом хроматографирования, определяется и факторами, действующими в процессе улавливания параметрами приемника-ловушки, его геометрией и поверхностью контакта скоростью газа-носителя адсорбционной активностью наполнителя кратностью циркуляции газа в ловушках степенью разбавления газом-носителем температурой термостатирования ловушек и природой, главным образом летучестью улавливаемого вещества. [c.207]

    Тепло- и массообмен в аппаратах с насадкой может быть достигнут только при равномерном и достаточном орошении насадки, а также при определенных соотношениях между количеством жидкости, стекающей по насадке, и скоростью газа, движущегося противотоком к жидкости. Недостаточное орошение не обеспечивает полной смачиваемости насадки и приводит тем самым к уменьшению поверхности контакта фаз газ жидкость. Избыток жидкости вызывает частичное затопление насадки и уменьшение поверхности соприкосновения между жидкой пленкой и газом. [c.136]

    Модель обновления поверхности контакта фаз. В данном случае принимается, что у поверхности контакта фаз (например, системы газ — жидкость) периодически происходит замещение элементов жидкости, находящихся в контакте с газом, жидкостью из глубинных слоев с составом, равным составу основной массы [И]. Пока элемент жидкости находится у поверхности контакта, массоотдача в глубь этого элемента проходит при таких условиях, как если бы он был неподвижен и имел бесконечную глубину, в этих условиях скорость массоотдачи является функцией времени экспозиции элемента. Время контакта определяется гидродинамической обстановкой и является единственным параметром [c.152]

    При нисходящем направлении потока усповия.течения дтя жидкости разрывные, т. е. она существует а виде капель, отдельных струй и пленки, стекающей по поверхности гранул, в то время как газ равномерно распределяется по слою. При высоких скоростях газа происходит возрастание перепада давления в жидкостном потоке и режим течения может стать пульсирующим. Режим пульсации наблюдался как в реакторах пилo77foгo, так и промышленного масштаба (63] и чаще всего преобладает в пристенощом пограничном слое. При малой скорости газового потока жидкость располагается преимущественно в центре слоя и у стенок реактора. В целом, присутствие жидкой фазы в реакторе создает ряд осложнений. Распределение жидкости по слою катализатора в большей степени зависит не только от скорости жидкости и газа, но и от физико-химических свойств сырья, конструктивных особенностей реактора и распределительных устройств для ввода жидкости. Все зти факторы влияют на эффективность контакта жидкости с катализатором и на содержание ее в слое [27]. [c.92]

    В насадочных абсорбционных колоннах величина а не равна поверхности насадки в единице ее объема. Поверхность контакта между газом и жидкостью в единице объема колонны является функцией скоростей газа и жидкости и не обязательно изменяется в том же направлении, что и коэффициент конвективной массоотдачи [152]. [c.485]

    При абсорбции газа в сосудах с жидкостью, имеющей горизонтальную, поверхность, на скорость процесса обычно оказывают влияние конвективные токи в жидкости, возникающие, например, из-за изменения температуры. Кроме того, если раствор газа имеет большую плотность, чем сам растворитель (например, при абсорбции СОа водой), система будет неустойчивой, и в любом случае через короткое время после начала контакта начнутся конвективные перемещения. Однако Харвей и Смит путем интерферометрических наблюдений за диффузией СОа в воду показали, что в течение нескольких первых секунд жидкость практически может считаться неподвижной. [c.77]

    Взаимодействие между фазами осуществляется на поверхности смоченных элементов насадки. Этот режим может заканчиваться в первой точке перегиба, в так называемой точке торможения газа, при этом скорость газа уменьшается из-за относительно большой скорости жидкости, движущейся противотоком эта точка лежит тем выше, чем больше плотность орошения. Однако точка торможения не всегда четко обнаруживается. После нее можно наблюдать возникновение промежуточного режима, наблюдаемого при струйчато-пленочном движении жидкости. Жидкость покрывает насадку в виде стекающей тонкой пленки и отдельных струй. Взаимодействие между фазами происходит на поверхности пленки и струй жидкости и в точках контакта жидкости с отдельными элементами насадки. Пленка и струи жидкости подтормаживают поток газа с образованием отдельных вихрей. [c.388]

    Конвективная составляющая пристенной теплоотдачи зависит от порозности слоя е, которая определяет средние скорости газа в слое и в пристенной области, а также число точек контакта элементов слоя со стенкой на единицу ее поверхности чем меньше е, тем больше число контактов и сильнее турбулизируется поток газа у стенки. С учетом этого, в качестве хараК терной скорости в слое нужно принять v = ы/е, а в качестве определяющего размера da = 4 е/а, так же, как это сделано при рассмотрении гидравлического сопротивления зернистого слоя. Поскольку da входит как в Nua ет, так и в Res, зависимость между которыми для конвективной теплоотдачи близка к линейной (см. табл. IV. 2), то для простоты поверхность стенки можно не учитывать при расчете поверхности элементов слоя в единице его объема, даже при малых отношениях D n/d. [c.129]

    IX-1-5. Значения эффективной поверхности контакта фаз. При орошении насадочной колонны жидкостью толщина и скорость жидкостного слоя изменяются от точки к точке по поверхности насадки. В случае физической абсорбции газа жидкостью на тех участках, где движение жидкости замедлено или ее слой очень тонок, может происходить практическое насыщение абсорбируемым газом, вследствие чего вклад этих участков в общую скорость абсорбции невелик. С другой стороны, если рассматривать не абсорбцию, а испарение орошающей жидкости в поток газа, то следует ожидать, что эффективный вклад различных участков поверхности, покрытой жидкостью, в суммарную скорость испарения будет практически одинаковым. Значит, поверхность контакта жидкости и газа, эффективная для испарения ( смоченная поверхность ), больше поверхности, эффективной для физической абсорбции газа. [c.215]

    Здесь А — концентрация растворенного газа у поверхности раздела между жидкостью и газом, соответствующая условиям равновесия с парциальным давлением газа в газовой фазе. Пока будем считать, что парциальное давление газа одинаково во всех точках рассматриваемого элемента пространства. Влияние на это парциальное давление других газов, обладающих низкой растворимостью, будет рассмотрено в разделеУ-13. Символом а обозначена поверхность контакта между газом и жидкостью, заключенная в единице объема системы, — коэффициент физической массоотдачи в жидкой фазе. Величина Н представляет собой среднюю скорость переноса газа через единицу поверхности действительная же скорость массопередачи может меняться как от точки к точке, так и со временем. Значение Л соответствует средней концентрации растворенного газа в массе жидкости. [c.99]

    Все эти рассуждения показывают, что при физической абсорбции газа эффективная поверхность контакта фаз меньше смоченной поверхности насадки. С другой стороны, при абсорбции, сопровождаемой химической реакцией, эффективной обычно является вся смоченная поверхность, потому что скорость абсорбции в присутствии химически взаимодействующего реагента увеличивается в меньшей степени, чем возрастает емкость раствора по абсорбируемому газу, и [c.218]

    При массообмене между жидкостью и газом поверхность контакта фаз можно увеличить за счет измельчения массы жидкости. Чем меньше размер капель, тем больше удельная поверхность контакта. Для увеличения поверхности контакта разработано множество приспособлений. Во многих из них распыление жидкости достигается за счет скоростного напора газа, проходящего через контактные элементы. При этом газ проходит через жидкость не сплошным потоком, а в виде пузырьков, благодаря чему создается поверхность контакта. Количество пены, образующейся при прохождении газа через жидкость, ограничивается уносом жидкости с газовым потоком, что приводит к уменьшению эффективности контактного элемента. Сочетание скорости потока газа и размера капель жидкости должно быть таким, чтобы капли вновь возвращались в массу той жидкости, из которой они попали в поток газа. [c.126]

    Барботажный слой имеет чрезвычайно сложную структуру, так как он не гомогенен, некоторые его физические параметры (иапример, вязкость) ие определены, отсутствует фиксированная поверхность раздела фаз (она непрерывно меняет свою величину и форму), всплывающие пузыри и струи газа создают мощные циркуляционные токи жидкости, поэтому точное количественное описание барботажного слоя до настоящего времени не разработано. Параметрами слоя, характеризующими его структуру, служат плотность и высота газожидкостного слоя, размеры и скорость пузырей, поверхность контакта фаз, продольное перемешивание жидкой и газовой фаз. [c.267]

    Поскольку абсорбция—процесс гетерогенный, степень поглощения окислов азота зависит от поверхности контакта между газом и кислотой. На скорость процесса абсорбции окислов азота ep oй кислотой оказывают влияние оба пограничных диффузионных сопротивления. Массопередачу через газовую фазу можно интенсиф щировать пов 1шением линейной скорости газа, массопередачу через жидкую фазу—увеличением плотности орошения башни. Большое влияние на протекание процесса абсорбции оказывает хорошее, полное смачивание насадки башен и равно-мерноэ распределение орошающей жидкости по сечению башни. [c.122]

    Определен характер изменения удельной ПКФ по высоте газожидкостного слоя. По мере удаления от решетки ПКФ сначала резко возрастает, достигает максимума, а затем уменьшается. Эти результаты хорошо согласуются с данными, полученными другими исследователями. Смещение максимума удельной поверхности к плоскости решетки при увеличении скорости газа интересно в связи с известным фактом наибольшей эффективности массообменного процесса в самом начале контакта реагирующих фаз. Проведенные измерения ПКФ непосредственно у самой решетки (на расстоянии 10 мм от нее) выявили, что удельная геометрическая ПКФ монотонно растет с увеличением скорости газа в соответствии с зависимостью ш .  [c.76]

    В рассматриваемых струйных аппаратах гидродинамическое состояние газо-жидкостной системы можно представить единой принципиальной схемой. Объем, занимаемый газо-жидкостной смесью, можно разделить на две области активную и барботажную. В активной области А (рис. 6.7.4.1) диспергирование попавшего в нее газа происходит за счет кинетической энергии струи жидкости. При высокой скорости диссипации энергии в объеме активной области пузырьки газа могут достшать размеров 5па< 1мм. Соответственно в этой зоне аппарата образуется система пузырей с большой удельной поверхностью контакта фаз газ—жидкость (5 а)- [c.529]

    Однако для расчетных целей при отсутствии части или всей требуемой информации может быть использован и другой подход, который часто оказывается менее трудоемким в смысле затраты времени, чем тщательный анализ всех деталей абсорбционного процесса. Коэффициент ускорения Е или удельная скорость абсорбции 7 зависят от состава раствора и газа и от величины Если использовать лабораторную модель абсорбера с известной поверхностью контакта фаз, в которой значение коэффициента физической массоотдачи таково же, что и в проект Груемой колонне, то можно определить значения Е или / , соответствующие составам жидкости и газа в различных точках проектируемого аппарата, и подставить их затем в уравнение (VIII,33) или (VIII,32). Использование лабораторных моделей для этой цели обсуждается в главе VII. [c.192]

    Большое влияние ка селективность оказывает температура, что ависит от разной энергии активации тех или иных стадий процес- а (энергия активации обычно более высока для побочных реакций). В результате каждый процесс имеет некоторую оптимальную температуру, определяемую достижением приемлемых скорости окисления и селективности. Повышение температуры может играть еще одну отрицательную роль, состоящую в переводе процесса в диффузионную или близкую к ней области протекания реакции процесс происходит в пограничной пленке, промежуточные продук-гы не успевают продиффупдировать в объем жидкости и переокис-ляются. Поэтому важную роль играет эффективная турбулизация реакционной смеси при барботированни газа-окислителя, способствующая переходу процесса в кинетическую область, развитию поверхности контакта фаз и интенсификации процесса. Следовательно, выбор условий окисления является сложной функцией многих химических и технологических факторов. [c.366]

    Для решения вопроса об окислении нитрозных газов в условиях, близких к производственным, был изготовлен специальный сосуд (рис. 4), который позволил проводить окисление нитрозных газов азотной кислотой при линейной скорости газа в 0,5 м1сек. Этот аппарат был сконструирован по типу промывателей пенного типа, применяемых в производстве азотной кислоты. Линейная скорость прохождения газа через такой аппарат составляет 0,4—0,6 м/сек, диаметр отверстий в промежуточных перегородках для прохождения газа — 2 мм, шаг между отверстиями — 8 мм. Пенный режим в доокислителе был принят наиболее эффективный, способный создать высокую поверхность контакта между газом и жидкостью. [c.82]

    Если Q 1) выражает количество газа, абсорбированного единицей поверхности за время контакта то средняя скорость абсорбции за это время равна Q 1)И. Так как общая площадь поверхности жидкости, экспонируемой газу, составляет лйк, то общая скорость абсорбции д (в моль1сек) пленкой связана с Q ( ) соотношением [c.79]

    Диффузионная зона (со стороны газовой фазы). Скорость реакции настолько велика (мгновенная химическая реакция), что зона реакции совпадает с поверхностью контакта фаз. Поглощаемый компонент успевает лишь насытить пленку со стороны газовой фазы. В этих условиях мгновенная реакция лимитируется массоотдачей со стороны газа, даже если последний отличается большой растворимостью. Соответствующая диаграмма связи принимает вид [c.166]

    Знание кинетики используемой реакции вовсе не является обязательным. Если она не известна, то можно применить следующую методику. Сначала измеряют скорость абсорбции R газа данным абсорбентом в лабораторной модели с известной поверхностью контакта фаз — в колонне с орошаемой стенкой (см. раздел IV-1-3) или в перемешиваемой ячейке (см. раздел УП-З). Затем, меняя время 0 экспозиции жидкости газу или интенсивность перемешивания, а следовательно, и ki, смотрят, изменяется ли R. Для обеспечен1ш применимости рассматриваемого здесь метода скорость абсорбции R в модели не должна зависеть от (или от О = 4Djnk ) во всем рабочем диапазоне изменения характеристик исследуемого аппарата — натуры. Если это условие соблюдается, можно считать, что полученное на лабораторной модели значение R будет справедливым и для аппарата — натуры. Отсюда, определив скорость абсорбции Ra в этом аппарате и зная R, можно вычислить и удельную межфазную поверхность а в нем. [c.210]

    Портер и др. измерили межфазную поверхность на колпачковой тарелке диаметром 0,9 м с помощью быстрой реакции первого порядка (см. раздел IX-1-3). Они нашли, что поверхность а контакта фаз в единице объема пены почти не зависит от скорости газа и высоты пены и составляет около , Ъ см . В то же время значение а" заметно возрастало при установке над тарелкой проволочной сетки. Найденные значения оказались почти не зависящими от условий и равными примерно 0,03—0,04 см1сек. [c.226]

    При контакте огарка с поверхностью установленных в верхнем слое тепловоспринимающих элемв Ргов начинается постепенное падение температуры частиц огарка и обжиговых газов до заданного значения. Понижение температуры в верхней зоне приводит к уменьшению линейной скорости газов и их заныленности. [c.56]

    Скорость реакции не зависит от объема катализатора и пропорциональна поверхности контакта фаз, поэтому для обеспечения высокой скорости необходимо создать большую поверхность раздела между фазами. Если реагенты находятся в жидкой фазе, то большая поверхность контакта на единицу объе1 а катализатора создается интенсивным перемешиванием, в результате которого образуется эмульсия катализатора в фазе реагентов или реагентов в фазе катализатора. Если реагенты газообразны, то применяется барботаж газа через слой жидкого катализатора. В обоих случаях удельная поверхность контакта (суммарная поверхность капель или пузырей в единице объема катализатора) обратно пропорциональна среднему диаметру частиц дисперсной фазы. [c.157]

    Идя по пути совершенствования оптических методов измёрения ПКФ, Родионов с сотрудниками разработал метод, основанный на явлении деполяризации света на границе раздела сред, имеющих разную оптическую плотность [272]. С помощью этого метода найдецо, что по мере удаления от плоскости решетки удельная поверхность контакта фаз вначале резко возрастает, достигает максимума, а затем уменьшается. Положение максимума зависит от соотношения скорости газа и запаса жрдкости на решетке. [c.71]


Смотреть страницы где упоминается термин Поверхность контакта v скорости газа: [c.27]    [c.153]    [c.273]    [c.457]    [c.281]    [c.276]    [c.140]    [c.140]    [c.28]    [c.274]   
Вибрационные массообменные аппараты (1980) -- [ c.94 , c.95 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхность контакта фаз

для скоростей газов



© 2024 chem21.info Реклама на сайте