Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Натуральный каучук резка

    Растворители действуют аналогичным образом. Так [276], скорость полимеризации метилметакрилата при пластикации натурального каучука резко снижается, если в систему добавить четыреххлористый углерод или бензол. [c.185]

    В результате реакций присоединения атомов или групп атомов к ненасыщенным связям основной цепи макромолекул синтетиче-кого и натурального каучука изменяется строение основной цепи полимера, что сопровождается резким изменением его свойств, В макромолекулах синтетических каучуков в реакцию вступают также боковые винильные группы звеньев, соединенных в положении 1—2 или 3—4. [c.239]


    Многие свойства полимеров (высокая вязкость растворов, растворение с предварительным набуханием, механические свойства, нелетучесть, неспособность переходить в парообразное состояние и т. д.) тесно связаны с большой энергией межмолекулярного взаимодействия. Именно резко возрастающая роль межмолекулярных сил является одной из важнейших особенностей полимеров, качественно отличающей их от низкомолекулярных соединений. Высокомолекулярные соединения широко распространены в природе — это животные и растительные белки, углеводы (целлюлоза и крахмал), натуральный каучук, смолы и др. С каждым годом растет число полимеров, создаваемых синтетически. Сегодня химия в состоянии не только воспроизводить многие природные полимеры, как, например, натуральный каучук, некоторые белки, но и создавать массу новых синтетических полимерных веществ, которых в природе не существует. В качестве примера можно привести элементорганические полимеры, которые обладают комплексом свойств, присущих как органическим, так и неорганическим полимерам. [c.327]

    Химические реакции в полимерах могут быть вызваны действием света. При малой длине волны светового излучения кванты света могут вызвать отрыв боковых активных атомов или групп от макромолекул или разрыв макромолекул. В результате инициируются цепные реакции деструкции или присоединения мономеров к макрорадикалам полимерных молекул. Обычно такие изменения вызываются излучением света с длинами волн 230— 410 нм. При повышении температуры резко ускоряется процесс деструкции, который в этом случае называется фотолизом. Облучение растворов каучука ультрафиолетовым светом в инертной среде приводит к снижению их вязкости, что объясняется образованием более коротких молекул в результате деструкции. В результате облучения светом может происходить сшивание макромолекул. Так, полиизопрен при действии солнечного света размягчается и становится липким. При облучении его кварцевой лампой в вакууме при комнатной температуре выделяются летучие продукты распада, среди которых до 80% приходится на молекулярный водород. При облучении ультрафиолетовым светом толуольных растворов полиизопрена наблюдается уменьшение их вязкости, связанное со снижением молекулярной массы полиизопрена (натуральный каучук). В концентрированных растворах после снижения молекулярной массы отмечен ее рост, что связано с формированием нерастворимой фракции (гель) при соединении макромолекул полиизопрена в сетчатую структуру. [c.242]


    История промышленного применения каучука началась с 1839 г., когда был открыт процесс вулканизации, резко улучшающий физические свойства каучука. С этого времени начался быстрый рост промышленного применения его. Наибольшие его количества стала вскоре потреблять автомобильная промышленность, на втором месте стояла электротехническая промышленность и производство различных резинотехнических изделий. Монополистом производства натурального каучука долгое время оставалась Бразилия. Хотя семена гевеи под страхом смерти вывозить запрещалось, все же в 1876 г. англичане тайно вывезли семена гевеи и посадили их на Цейлоне. [c.319]

    При действии ультрафиолетового излучения при повышенной температуре (150°С) протекает деполимеризация (фотолиз) каучука с выделением изопрена. Скорость деструкции натурального каучука под влиянием ультрафиолетовых лучей резко возрастает в присутствии кислорода воздуха. [c.291]

    Технический натуральный каучук при комнатной температуре подвергается относительно медленному окислению благодаря наличию в его составе естественных противостарителей. Прп экстрагировании каучука ацетоном нз каучука удаляются смолы, в том числе и естественные противостарители поэтому экстрагированный каучук, а также чистый каучук, лишенный примесей белков и смол, окисляются довольно легко, В начальной стадии окисления натуральный каучук становится липким, после присоединения 0,5—1,0% кислорода весь каучук размягчается. При дальнейшем окислении, когда каучук поглотит 12—25% кислорода, он становится твердым и хрупким и на его поверхности образуются трещины. Характерно, что поглощение небольших количеств кислорода вызывает резкие изменения свойств каучука понижается предел прочности при растяжении, средний молекулярный вес, вязкость его растворов, повышается пластичность и растворимость. При присоединении 0,5% кислорода предел прочности ири растяжении пленки каучука, приготовленной из латекса, понижается на 50%. [c.62]

    Из данных, приведенных на рис. VII. 1, следует, что при растяжениях больше 60 % экспериментальные данные резко отклоняются от прямой. Марк и др. [101] объясняют такое расхождение возможной кристаллизацией сшитого натурального каучука при растяжении. Каждый кристаллит связывает много цепей и представляет собой полифункциональный объемный узел сетки. Кристаллизация уменьшает и число активных цепей. Однако полностью объяснить расхождение теории с экспериментом этим нельзя, так как кристаллизация у натурального каучука при 298 К начинается только при растяжении больше, чем 200 %. [c.166]

    Из уравнения (2.2) следует, что для уменьшения усилия резания необходимо уменьшить сопротивление каучука разрушению, угол заострения лезвия ножа и коэффициент трения. Значительно уменьшить угол заострения нельзя, так как при малых углах ослабляется режущая кромка. Коэффициент трения материала о боковую поверхность ножа можно снизить (но тоже в определенных пределах), повышая чистоту обработки лезвия. Следовательно, нужно добиваться снижения Q и N, величина которых зависит от типа каучука и его физического состояния. Сила Q пропорциональна модулю упругости каучука первого рода Е, а сила N — модулю упругости каучука второго рода G. Модули упругости характеризуют прочность каучука и сопротивление деформированию. Численные значения их меняются в широком диапазоне в зависимости от типа, степени кристалличности и температуры каучука. С повышением температуры каучука, по мере перевода его из кристаллического состояния в аморфное, модули упругости существенно понижаются. Вот почему перед резанием каучук желательно разогревать. В этом случае усилие резания снижается и отпадает необходимость конструирования мощного оборудования. Величина удельного усилия резания разогретого натурального каучука находится в пределах 1000— 3000 Н/см. При разрезании закристаллизованного (стеклообразного) каучука величина удельного усилия резания резко возрастает и доходит до 10 кН/см. Поэтому во избежание поломки оборудования [c.50]

    Введение малеинового ангидрида в резиновую смесь на основе СКИ-3 резко снижает условное напряжение при 300% удлинении каркасной резины, значительно увеличивает относительное удлинение при разрыве и усталостную выносливость при многократном растяжении. Остальные физико-механичес-кие показатели находятся на уровне показателей серийной резины. Введение малеинового ангидрида в состав макромолекул в целом не вызывает сильных изменений в физико-механичес-ких показателях резин, однако они изменяются в направлении к свойствам резин на основе натурального каучука. Тем не менее ни резина на основе натурального каучука, ни резина на основе СКИ-3, модифицированного малеиновым ангидридом, по приведенному комплексу свойств не превосходят резину на основе СКИ-3-01. [c.35]

    В присутствии кислорода резко возрастает скорость деструкции натурального каучука под влиянием ультрафиолетового света, происходит фотоокислительная деструкция. Облучение ускоряет окислительную деструкцию каучуков и резин значительно больше, чем нагревание. При действии естественных погодных условий полиэтилен разрушается в течение 2—3 лет в темноте при обычной температуре он совсем не деструктируется. [c.637]


    Первые же экспериментальные исследования процесса пластикации натурального каучука в присутствии мономеров показали, что мономеры в зависимости от их химической природы резко различаются как по способности реагировать с первичными макрорадикалами каучуков, так и по направленности последующих превращений, зависящей от активности вторичных макрорадикалов, которые возникают после присоединения звеньев мономеров [87, 88]. Если взять небольшие количества мономеров с таким расчетом, чтобы наращивание новых звеньев существенно не изменя- [c.191]

    Несмотря на огромные успехи в области синтеза каучука и непрерывное увеличение объема производства синтетических каучуков, а также расширение их ассортимента, натуральный каучук частично сохраняет значение как один из наиболее высококачественных каучуков общего назначения, но доля его в мировом потреблении каучуков резко снижается. [c.482]

    При кристаллизации натурального каучука изменяются его механические свойства, а также плотность, теплопроводность, теплоемкость, коэффициент теплового расширения и другие физические свойства. Рентгенограммы также обнаруживают резкое изменение структуры при кристаллизации, соответствующее фазовому превращению. [c.79]

    Окислительная деструкция особенно характерна для резиновых материалов, разрушающихся при воздействии кислорода, озона и других окислителей. Например, если в среде азота и двуокиси углерода прочность вулканиза-тов натурального каучука практически не меняется, то под влиянием кислорода она быстро и резко снижается (см. рис. 1.29). [c.73]

    Однако гистерезисные п01ери, определяемые по гистерезис-ной петле, с увеличением времени вулканизации проходят через хорошо выраженный минимум . В резинах из натурального каучука резкий минимум наблюдается в оптимуме вулканизации, определенном по модулю. В резинах из бутадиен-стирольного каучука минимум, если он вообще обнаруживается, имеет место при таком времени вулканизации, которое по другим показателям соответствует сильной перевулканизации. [c.102]

    Чарльз Гудьир случайно уронил смесь натурального каучука (вязкое вещество, плавящееся при нагревании и делающееся хрупким при охлаждении) и серы на горячую подставку он увидел, что каучук не расплавился. Результатом этого наблюдения стала вулканизация - процесс, меняющий свойства резины так, что резко расширяются граниЦы ес применения. [c.308]

    Когда обсуждалось применение уравнения (12.2) к процессу кристаллизации, мы видели, что деформация облегчает кристаллизацию благодаря дополнительному уменьшению энтропии системы. Пока вклад деформации в эффект снижения энтропии не достигнет определенной критической величины, кристаллизация не начнется. Так, при растяжении натурального каучука при комнатной температуре до 4007о плотность практически пе меняется, а при дальнейшем растяжении начинается резкий рост плотности за счет кристаллизации. [c.182]

    Рассмотрим теперь кривую напряжение — деформация для незакристаллизованных полимеров, кристаллизующихся только в процессе деформации. Наиболее характерный пример — вулканизаты натурального каучука. На рис. 12,14 показаны кривые о -е при наличии кристаллизации и при ее отсутствии. Видно, что ири достижении определенного удлинения (для натурального каучука это около 400%) в кристаллизующемся эластомере вследствие интенсивной кристаллизации резко возрастает напряжение. При приближении к точке разрыва напряжение в вулканизате кристаллизующегося полимера может и несколько ра (иногда на порядок) превышать напряжение в не-кристаллизующемся эластомере. Однако кривая а—е кристаллизующегося полимера сохраняет основные черты кривой для некри-сталлизующихся эластомеров она тоже является 5-образиой. Иа- [c.188]

    Благодаря регулярности строения, 1,4-дивиниловый каучук превосходит натрий-дивиниловый каучук по многим свойствам и приближается к натуральному каучуку. Он имеет низкую температуру стеклования (—110° С), значительно сопротивляется истиранию и очень эластичен. Отличие от натурального каучука заключается в том, что он не обладает клейкостью, плохо поддается переработке на резиносмесительном оборудовании. Физико-механические свойства резин на основе 1,4-дивинилового каучука в зависимости от температуры падают более резко, чем резин на натуральном каучуке. [c.184]

    Так как СКБрД и СКС не обладают высокой механической прочностью, в большинстве случаев, с целью получения достаточно прочных резин, их применяют в сочетании с натуральным каучуком или в смеси с сажевыми наполнителями. Сажа резко ухудшает электроизоляционные свойства каучуков, вследствие чего упрочнение резин с помощью сажи может быть использовано только для шланговых оболочек. Если нужны морозостойкие [c.188]

    Резко повышаются предел прочности при растяжении и эластичность каучука, пластичность его при этом почти полностью исчезает. Повышение предела прочности при растяжении каучука после вулканизации иллюстрируется следующими данными натуральный каучук после обработки на вальцах имеет предел прочности при растяжении 10—15 кгс1см , после вулканизации его предел прочности при растяжении повышается до 350 кгс1см . Натрий-дивиниловый каучук до вулканизации имеет предел прочности при растяжении 2—5 кгс см , после вулканизации предел прочности при растяжении его равен 18—20 кгс см , а при вулканизации смеси натрий-дивинилового каучука с канальной сажей предел прочности при растяжении увеличивается до 130—160 кгс см.  [c.71]

    На рис. 51 приведены кривые изменения объема натурально каучука во времени при различных температурах . Из рисут видно, чго в определенном интервале температур (от —, —33"" С) довольно быстро происходит резкое измене>1ие объем [c.136]

    Кипы натурального каучука (НК) растаривают, снимают с них наружный слой, загрязненный различными включениями. Известно, что при низких температурах НК переходит из аморфного в кристаллическое состояние. Интенсивность кристаллизации НК ускоряется при температурах ниже +10 °С. Кипа закристаллизованного НК требует больших усилий для ее резания и затрат большого количества теплоты на декристаллизацию. На некоторых заводах кипы кристаллического НК разрезают на специальных однолезвиевых ножах (см. рис. 2.5) на куски, которые подвергают декристаллизации в механизированных распарочных камерах путем нагрева при повышенных температурах. На других заводах кипы НК после растаривания целиком направляют на декристаллизацию и затем осуществляют их резку многолезвиевыми ножами (см. рис. 2.7). Технико-экономиче-скими расчетами показано, что декристаллизацию НК целесообразнее осуществлять не в специальных камерах, а в обычных отапливае- [c.46]

    Кристаллизация полиизобутилена, которая не может быть достигнута нн при каких температурах и выдержках, легко осуществляется при помощи растяжения. Что касается натурального каучука, то он кристаллизуется как при растяжении, так и вследствие длительной выдержки при пониженных температурах (при " ом-натной температуре для этого требуются годы). Кристаллизация, вызванная растяжением, представляет собой такое же фазовое превращение, как обычный процесс, протекающий в oT yT tBHe внешних сил, с тем различием, что кристаллы ориентируются в направлении напряжения. Рентгенограммы полимеров, закристаллизованных подобным образом, представляют собой типичные фазер-диаграммы. Кроме того, в этом случае кристаллизация и плавление происходят сравнительно быстро, хотя плавление может быть задержано путем охлаждения закристаллизовавшегося образца вследствие резкого возрастания времени релаксации. [c.448]

    По химическим признакам полимеры разделяются на линейные, разветвленные и пространственно-структурированные или сшитые, а также на низко- и высокомолекулярные. Строение цепей высокомолекулярного соединения одного и того же химического состава может отличаться вследствие стереоизомерии. Важнейшими стереорегулярными полимерами являются изотактические и синдиотактические. Атактический (стереонерегулярный и изотактический полимеры одного и того же химического состава резко отличаются по строению и свойствам. Атактические полимеры, состоящие из нерегулярно построенных цепей, аморфны и неспособны кристаллизоваться даже при растяжении. Изотактм-ческие полимеры обычно находятся в кристаллическом состоянии или легко кристаллизуются при растяжении (натуральный каучук). [c.65]

    Проникновение газов, особенно кислорода, в резины может влиять на их мехапичвские свойства. В отличие от диоксида углер10да кислород вызывает резкое падение прочности резин, в частности резин на основе натурального каучука (рис. 1У.4). При увеличении давления ки Сло,рода (воздуха) на резину уменьшается ее относительное удлинение при разрыве, и изменяется скорость накопления остаточной деформации. [c.153]

    В случае натурального каучука в пределах температур 350— 400° С наблюдается незначительное выделение таза, на стенках реактора и стеклянной трубки появляются капли смолы. Бурное газовыделение начинается при 450° С (через 20—25 мин. от начала опыта) и заканчивается при 570° С (через 30—35 мин. от иачала опыта). В этом интервале температур происходит резкое изменение веса вещества. Каучук разлагается почти полностью (остаток не более 1 %). [c.38]

    Резкое возрастание предельного напряжения сдвига суспензии канальной сажи в растворе натурального каучука наблюдается при введении небольшой добавки катамина, полярные группы которого адсорбируются на активных функциональных группах поверхности сажи. Углеводородный радикал катамина ориентируется в сторону полимерной среды, улучшая тем самым условия взаимодействия каучука с сажей [181]. [c.27]

    Основная масса каучуков, в том числе практически все синтетические полимеры, перед пуском в производство подвергаются предварительной подготовке, заключающейся в их растаривании и резке. Однако некоторые синтетические и натуральный каучуки требуют дополнительной обработки, включающей декристаллизацию и пластикацию, поскольку исходные каучуки имеют повышенные жесткость и твердость из-за наличия кристаллической фазы и обладают нeyдoвлeтвopитeJiьными технологическими свойствами при переработке резиновых смесей вследствие высокой молекулярной массы. [c.5]

    Аналогичное влияние азотсодержащих гетероциклических группировок на вулканизационное действие ускорителей наблюдается и в ряду тиурамсульфидов (I—III). Несимметричные тиурамсульфиды, содержащие в молекуле пиперидиновые, пиперазиновые и морфолиновые гетероциклы, являются высокоактивными ускорителями вулканизации. Так, применение их в смесях из натурального каучука приводит к получению вулканизатов, по прочностным показателям (по модулю и сопротивлению разрыву) превышающих вулканизаты с нашедшим широкое применение тет-раметилтиурасульфидом и значительно превосходящих вулканизаты, полученные с помощью такого ускорителя,. как 2-меркаптобензтиазол. Тиурамсульфиды, содержащие гетероциклические группировки с двумя гетероатомами (II и III), придают резиновым смесям большую стойкость к преждевременной вулканизации. Данные, характеризующие кинетику изменения вязкости по Муни смесей из бутадиенстирольного каучука при температуре 125° (рис. 2), показывают, что в случае применения таких ускорителей подъем кинетических кривых начинается лишь после 26— 27 мин нагревания, тогда как для смеси, содержащей алифатический тиу-рамсульфид, резкое повышение вязкости имеет место уже на 17 мин нагревания Смесь с тиурамсульфидом — производным пиперидина (I) — по склонности к преждевременной вулканизации занимает промежуточное положение между указанными выше системами с гетероциклическими и алифатическими тиурамсульфидами. [c.52]

    Барлов, Лерле и Робб [36] пришли к выводу, что только для очень тонких пленок (менее 0,02 мм при 700 °С) процесс пиролиза не должен зависеть от толщины пленки. Однако работа с тонкими пленками встречает большие затруднения в их получении, особенно для нерастворимых веществ. Поэтому часто проводят исследования, пиролизуя микрообразцы в виде кусочка, однако необходимо только обеопечить проведение пиролиза в воспроизводимых условиях. Фойгт [30] показал, что при работе с образцами. массой 2 мг отклонения массы навески на 50% мало влияют на состав продуктов пиролиза. Влияние навески в интервале от 2,5 до 50 мг на выход и состав продуктов пиролиза в ячейке филаментного типа было изучено в работе [3]. На примере образца натурального каучука, взятого в виде кусочка, было показано, что пиролиз микрограм-мовых навесок приводит к большему удельному выходу летучих продуктов п к большему относительному содержанию в них тяжелых фракций, чем пиролиз миллиграммовых навесок, причем влияние размера навески на выход и состав продуктов пиролиза особенно резко проявляется в области микрограммовых навесок. Поэтому для получения более воспроизводимых результатов при работе с образцами в виде кусочка целесообразно работать с навесками от 1 мг и больше, если нет особых ограничений. Пиролиз нескольких кусочков, не [c.90]

    В литературе можно найти лишь незначительное число работ, посвященных действию излучения на каучук и подобные ему материалы. Две немецкие статьи относятся к действию тихого разряда па растворы каучука. Однако имеющиеся в них данные трудно использовать, так как они приводят к противоположным выводам. Фроманди [1] описывает резкое понижение вязкости, йодного числа, молекулярного веса и точки размягчения в результате облучения растворов натурального каучука и полиизопрена. Впоследствии в той же лаборатории Гок и Лебер [2] обнаружили столь же значительное повышение всех этих величин. Результаты опытов Фроманди, по мнению последних исследователей, объясняются действием небольших следов кислорода, присутствовавших в изучавшейся системе. Кислород под действием разряда, повидимому, озонировался, что и приводило к разрушению молекулы каучука. [c.196]

    Поскольку переход Р. в стеклообразное состояние имеет релаксационную природу, область перехода, согласно принципу температурно-временной суперпозиции, м. б. существенно изменена в зависимости от временнбго фактора (режима механич. нагружения). Так, резкое возрастание G и максимумы G", наблюдаемые в переходной зоне, м. б. достигнуты как путем снижения Т, так и повышения со. Если при со, равных нескольким гц, определяемая по механич. свойствам темп-ра механич. стеклования Т для Р. из натурального каучука составляет от —40 до —70°С, то при со порядка 10 —10 гц Гс О С. Переход Р. в стеклообразное состояние можно обнаружить без проведения механич. испытаний, вапр. по изменению коэфф. теплопроводности, температурного коэфф. расширения и теплоемкости. В этом случае определяют темп-ру структурного стеклования, к-рая лежит ниже темп-ры механич. стеклования и может рассматриваться как нек-рое предельное значение последней, соответствую щее бесконечно медленному нагружению (см. также [c.159]


Смотреть страницы где упоминается термин Натуральный каучук резка: [c.213]    [c.505]    [c.145]    [c.126]    [c.178]    [c.187]    [c.109]    [c.109]    [c.460]    [c.120]    [c.62]    [c.568]    [c.159]    [c.120]    [c.218]    [c.489]    [c.632]   
Технология резины (1967) -- [ c.232 ]

Технология резины (1964) -- [ c.232 ]




ПОИСК





Смотрите так же термины и статьи:

Каучуки резка

Натуральный каучук

Резка



© 2025 chem21.info Реклама на сайте