Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Натуральный каучук деструкция

    Средняя молекулярная масса натурального каучука составляет от 7-10 до 2,5 10 . Он хорошо растворяется в ароматических углеводородах, хлороформе, четыреххлористом углероде, не растворим в спиртах и ацетоне, стоек к действию воды, разбавленных кислот и щелочей. Плотность натурального каучука равна 0,913 т/м . Звенья натурального каучука содержат двойные связи, поэтому он реагирует с кислородом и озоном, галогенами, хлористым водородом и другими реагентами. При нагревании выше 220°С и действии кислорода подвергается деструкции. [c.425]


    Химические реакции в полимерах могут быть вызваны действием света. При малой длине волны светового излучения кванты света могут вызвать отрыв боковых активных атомов или групп от макромолекул или разрыв макромолекул. В результате инициируются цепные реакции деструкции или присоединения мономеров к макрорадикалам полимерных молекул. Обычно такие изменения вызываются излучением света с длинами волн 230— 410 нм. При повышении температуры резко ускоряется процесс деструкции, который в этом случае называется фотолизом. Облучение растворов каучука ультрафиолетовым светом в инертной среде приводит к снижению их вязкости, что объясняется образованием более коротких молекул в результате деструкции. В результате облучения светом может происходить сшивание макромолекул. Так, полиизопрен при действии солнечного света размягчается и становится липким. При облучении его кварцевой лампой в вакууме при комнатной температуре выделяются летучие продукты распада, среди которых до 80% приходится на молекулярный водород. При облучении ультрафиолетовым светом толуольных растворов полиизопрена наблюдается уменьшение их вязкости, связанное со снижением молекулярной массы полиизопрена (натуральный каучук). В концентрированных растворах после снижения молекулярной массы отмечен ее рост, что связано с формированием нерастворимой фракции (гель) при соединении макромолекул полиизопрена в сетчатую структуру. [c.242]

    Величина максимума набухания зависит от природы каучука, его предшествующей обработки и от природы растворителя. Неполярные каучуки — натуральный каучук, СКБ, СКС, бутилкаучук — набухают и хорошо растворяются в неполярных растворителях, полярные каучуки — хлоропреновый, СКН — в полярных растворителях. Предварительная механическая обработка каучука, а также другие условия, приводящие к его деструкции, повышают растворимость каучука. Особенно сильно механическая пластикация влияет на характер набухания и на скорость растворения натурального каучука. Вулканизация всех каучуков приводит к практической потере растворимости и к значительному понижению степени набухания. Степень набухания вулканизатов в растворителях является показателем их стойкости к действию растворителей. [c.317]

    Однако методом озонирования (разновидность окислительной деструкции) было доказано, что в действительности макромолекула каучука имеет форму открытой цепи. При этом в результате разложения полученного озонида натурального каучука были выделены и идентифицированы следующие продукты (в процентах от массы каучука)  [c.10]


    Нагревание повышает пластичность каучука и резиновых смесей, и этим пользуются при осуществлении технологических процессов, но повышение температуры оказывает не всегда благоприятное влияние на пластикацию натурального каучука. При нагревании каучука повышается подвижность молекулярных звеньев, уменьшаются силы межмолекулярного взаимодействия, каучук становится менее вязким и более пластичным. При охлаждении каучук снова теряет свою пластичность, но прн условии отсутствия сопутствующих нагреванию окислительных процессов, приводящих к необратимой деструкции. Таким образом, нагревание каучука вызывает появление временной пластичности, в значительной мере исчезающей при охлаждении каучука. Понижение вязкости и повышение пластичности каучука в этих условиях уменьшают вероятность механического разрыва молекул, так как при приложении к каучуку внешней растягивающей силы [c.235]

    Скорость окислительной деструкции полимеров значительно возрастает в присутствии веществ, легко распадающихся на свободные радикалы (рис. 33 и 34), а также в присутствии ничтожных количеств (сотые и тысячные доли процента от массы полимера) металлов переменной валентности, таких, как Ре, Си, Мп, N1. Эти металлы участвуют в окислительно-восстановительных реакциях и ускоряют образование свободных радикалов. Так, в присутствии стеарата железа значительно возрастает скорость окисления натурального каучука (рис. 35). Влияние металлов в данном случае, по-видимому, аналогично их влиянию на процесс цепной полимеризации. [c.271]

    Не рекомендуют применять высокие температуры в следующих случаях 1) при вулканизации многих резиновых изделий на основе натурального каучука, так как натуральный каучук легко подвергается окислительной деструкции при повышенных температурах и весьма чувствителен к перевулканизации 2) в процессе вулканизации резиновых изделий больших размеров, так [c.336]

    Предложено понятие эффективной пластикации как отношение числа новых цепей, образующихся в процессе механодеструкции в единице массы каучука за данный период времени, к исходному числу цепей. Барамбойм за меру деструкции принимал изменение растворимости синтетического и натурального каучуков. Дпя оценки степени деструкции он ввел три параметра, связанные с разными сторонами процесса  [c.411]

    При действии ультрафиолетового излучения при повышенной температуре (150°С) протекает деполимеризация (фотолиз) каучука с выделением изопрена. Скорость деструкции натурального каучука под влиянием ультрафиолетовых лучей резко возрастает в присутствии кислорода воздуха. [c.291]

    Химические превращения каучуков происходят также и под влиянием физических факторов. При нагревании натурального каучука в присутствии кислорода происходит главным образом его окисление. Натуральный каучук при этом сильно размягчается и при температуре выше 120 превращается в смолоподобную жидкость, ири охлаждении которой невозможно получить первоначальный каучук вследствие необратимого превращения, происходящего в результате окисления и деструкции каучука. Но если нагревание натурального каучука производить в среде инертного газа при температуре 200—250 °С, его ненасыщенность понижается в несколько раз и вязкость растворов становится ниже вязкости растворов исходного каучука. Действие разрядов электрического тока на натуральный каучук подобно действию нагревания в среде инертного газа. Под действием ультрафиолетовых лучей в среде инертного газа понижается растворимость натурального каучука и вязкость его растворов. В присутствии кислорода ультрафиолетовые лучи ускоряют окисление и размягчение натурального каучука. [c.59]

    Установлено, что при окислении каучуков происходят два противоположных по своему влиянию на молекулярную структуру процесса деструкция и структурирование. Соотношение скоростей деструкции и структурирования зависит от структуры каучука и различных условий процесса окисления. Уменьшение концентрации кислорода ведет к уменьшению скорости деструкции натурального каучука и к повышению скорости структурирования. При нагревании в вакууме натуральный каучук, весьма склонный в деструкции, подвергается структурированию При окислении дивинилового каучука, наоборот, с уменьшением концентрации кислорода скорость структурирования понижается. [c.64]

    ОНИ достаточно легко могут скользить относительно друг друга. По этой причине эффективность процесса пластикации на вальцах при повышении температуры (до 120 °С) снижается. При пластикации при температурах свыше 120 °С наблюдается ускорение окислительной деструкции каучука и эффективность процесса пластикации значительно возрастает подобные температурные условия создаются при пластикации в быстроходных резиносмесителях, в которых температура пластиката достигает 160—180 С. Влияние температуры и различных сред нп процесс пластикации натурального каучука в течение 50 мин приведено на рис. 41. [c.236]

    Первые стадии процессов изучения строения природных соединений, как правило, начинаются с разложения—систематической деструкции сложного вещества. Таковы пути изучения строения жиров, сахаров, белков, натурального каучука, витаминов, антибиотиков и многих других. [c.39]


    Энергичным окисляющим агентом является озон. Прн действии на натуральный каучук озона (на свету) происходит его сильная деструкция, что следует учитывать при эксплуатации изделий ш натурального каучука. [c.65]

Рис. 7.3. Полярограммы бромпроизводных продуктов деструкции полиэтилена (/), полиизобутилена (2) и натурального каучука (3) Рис. 7.3. Полярограммы <a href="/info/1558769">бромпроизводных</a> продуктов деструкции полиэтилена (/), полиизобутилена (2) и натурального каучука (3)
    Озонирование воздуха в результате разрядов статического электричества при вращении металлических поверхностей валков и роторов оборудования, применяемого при пластикации, увеличивает скорость деструкции каучука. При пластикации натурального каучука, кроме того, происходит механическое разрушение глобул вследствие многократных деформаций сжатия и сдвига. [c.12]

    Многие полимеры подвергаются механодеструкции в процессе размола или вальцевания. При так называемой мастикации натурального каучука происходит механически инициируемая, авто-окислительная деструкция, которая приводит к снижению молекулярной массы, что делает более удобным его переработку [23]. [c.248]

    В зависимости от природы высокомолекулярного соединения и его стойкости к различным воздействиям применяются гидроли . тический, термический, окислительный и другие методы деструкции. Рассмотрим использование некоторых из них при изучении строения типичных представителей высокомолекулярных соединений — натурального каучука и целлюлозы [3,4], именно на этих веществах. были разработаны основные методы исследования структуры макромолекул. [c.9]

    При термической деструкции натурального каучука получается то или иное количество изопрена и дипентена. Например, при быстром нагревании очищенного каучука до 700°С в отсутствие воздуха можно выделить соответственно 22,6 и 46% этих веществ (расчет по разложившемуся каучуку). По мнению большинства исследователей, образование дипентена объясняется вторичной реакцией димеризации изопрена вследствие высокой температуры деструкции это мнение подтверждается тем, что при нагревании изопрена получается также дипентен  [c.9]

    Цепная полимеризация. Механизмы радикальной и ионной поли меризации. Инициаторы и регуляторы. Причины образования развет вленных и пространственных полимеров. Стереорегулярные полимеры Применение катализаторов Циглера—Натта. Сополимеризация. Блок сополимеры и привитые сополимеры. Поликонденсация. Фенолальде-гидные и мочевиноальдегидные полимеры. Сложные полиэфиры. Поли меры на основе фурфурола. Мономер ФА. Эпоксидные и кремнийорга нические полимеры. Тиоколы. Полиуретаны. Полиамиды. Альтины Синтетические и натуральные каучуки. Полистирол и полиакрилаты Особые свойства высокомолекулярных соединений. Химические реак ции высокомолекулярных соединений полимераналогичные превращения и макромолекулярные реакции. Вулканизация. Деструкция полимеров. Ингибиторы деструкции. [c.108]

    Следует отметить, что выход изопрена при термической деструкции достигает почти 70% от исходного каучука. Это обстоятельство, а также образование каучукоподобных веществ при длительном хранении изопрена дали основание утверждать, что именно остатки этого соединения являются основной структурной единицей макромолекулы натурального каучука. [c.9]

    Методом частичной деструкции можно приготовить блок-сополимеры из природных высокомолекулярных веществ, что открывает широкие возможности для модификации их (сочетание в одной макромолекуле свойств синтетического и натурального каучука, свойств полисахаридов и винильных полимеров и т. д.). [c.274]

    Хотя деструкция часто является нежелательной побочной реакцией, ее нередко проводят сознательно для частичного снижения степени полимеризации, чем облегчаются переработка и практическое использование полимеров. Например, в производстве лаков на основе эфиров целлюлозы, когда непосредственное растворение этих веществ дает слишком вязкие растворы, неудобные для нанесения покрытий, исходную целлюлозу подвергают предварительной деструкции. Частичная деструкция (пластикация) натурального каучука на вальцах облегчает его переработку в резиновые изделия. Реакция деструкции используется для установления химического строения полимеров, для получения ценных низкомолекулярных веществ нз природных полимеров (гидролитическая деструкция целлюлозы или крахмала в глюкозу, белков в аминокислоты), при синтезе привитых и блок-сополимеров и т. д. Изучение деструкции дает возможность установить, в каких условиях могут перерабатываться и эксплуатироваться полимеры оно позволяет разработать эффективные методы защиты полимеров от различные воздействий, найти способы получения полимеров, которые мало чувствительны к деструкции, и т. д. Знание механизма и закономерностей деструкции дает возможность усилить или ослабить ее по желанию в зависимости от поставленной задачи. [c.621]

    Химическая деструкция лучше всего изучена и наиболее часто наблюдается у гетероцепных полимеров она протекает избирательно за счет разрыва связи между углеродом и гетероатомом. Конеч-ны м продуктом реакции является мономер. Карбоцепные полимеры, макромолекулы которых не содержат кратной связи, обычно мало склонны к химической деструкции, так как связь С—С устойчива к наиболее ходовым реагентам. Только при очень жестких условиях или наличии в макромолекуле групп, снижающих прочность связей С—С в цепи полимера, происходит химическая деструкция карбоцепных высокомолекулярных соединений. Непредельные карбоцепные полимеры, например натуральный каучук, очень чувствительны к различным окислителям, но в этом случае деструкция [c.621]

    В присутствии кислорода резко возрастает скорость деструкции натурального каучука под влиянием ультрафиолетового света, происходит фотоокислительная деструкция. Облучение ускоряет окислительную деструкцию каучуков и резин значительно больше, чем нагревание. При действии естественных погодных условий полиэтилен разрушается в течение 2—3 лет в темноте при обычной температуре он совсем не деструктируется. [c.637]

    Натуральный каучук представляет собой полиизопрен строго [ипейпой структуры, отличающийся высоким средним молекулярным весом. Плохая растворимость непластицированного натурального каучука затрудняет определение его молекулярного веса. После пластикации, т. е. частичной деструкции макромолекул, молекулярный вес натурального каучука (Мос ,) колеблется около 200 ООО—300 ООО. [c.235]

    В практике резиновой промышленности начали применять быстроходные резиносмесители со скоростью вращения роторов, равной 30 и 40 об мии и с мотором мощностью 700 тт. Повышение мощности привода и скорости вращения роторов приводит к уве-личениию давления каучука в рабочей камере. В связи с этим возникла необходимость в увеличении давления верхнего затвора на каучук. Оказалось, что применение таких резиносмесителей при скорости вращения роторов около 40 об1мин является весьма эффективным. Температура пластиката в зависимости от продолжительности пластикации повышается до 140—180 °С. В результате интенсивной механической обработки и под влиянием высо-кай температуры деструкция натурального каучука происходит значительно быстрее и продолжительность пластикации сокращается почти в три раза. При увеличении давления верхнего затвора до нескольких килограммов на квадратный сантиметр загрузку каучука можно увеличить до 135—150 кг. [c.245]

    Полисульфиды находят применение в качестве синтетических каучукоподсбных материалов, известных под названием т и о к о-лов. Они имегот более высокий удельный вес (1,6 г/см ) по сравнению с полиуглеводородами. Из распространенных растворителей только сероуглерод вызывает некоторое набухание тиоколов. Слабые кислоты и окислительные среды не вызывают заметного разрушения этих полимеров. Деструкция их наблюдается в ще- точных растворах и концентрированных кислотах. При температуре выше 80° тиоколы иостепеино разрушаются, при охлаждении до 15° они утрачивают эластичность ниже этой температуры полимер становится хрупким. Тиоколовые каучуки вулканизуются при помощи окисей металлов. Пленки тиокола после вулканизации приобретают высокую газонепроницаемость, несколько превышающую газонепроницаемость вулканизатов натурального каучука, или полибутадиена. [c.462]

    Блоксополимеризация оказалась наиболее эффективным методом модифицирования свойств натурального каучука и синтетических полиизопреновых и полибутадиеновых каучуков. Прививка каучука легко происходит в условиях его пластикации на вальцах. При вальцевании смеси полимеров на охлаждаемых вальцах в атмосфере азота происходит перетирание материала, сопровождающееся механической деструкцией его макромолеку- чярных цепей с образованием свободных радикалов, длительность существования которых достаточно велика. Большая длительность жизни этих радикалов обусловлена высокой вязкостью вальцуемой смеси, замедляющей взаимодействие макрорадика-лов, и отсутствием в реакционной среде активного реагента—кислорода. По мере увеличения концентрации макрорадикалов возрастает вероятность их взаимного насыщения с образованием новых полимерных цепей. В состав новых цепей входят блоки макромолекул обоих обрабатываемых компонентов. Таким [c.537]

    На процесс вулканизации каучука большое влияние оказывает взаимодействие каучука с кислородом. Наличие точек максимума и минимума на кривых объясняется тем, что при вулканизации натурального каучука протекают одновременно два процесса процесс структурирования под действием серы и процесс деструк ции под влиянием кислорода и нагревания. Оба эти процесса про текают одновременно. Сначала при вулканизации скорость струк турирования значительно превосходит скорость деструкции, за тем, когда большая часть серы оказывается связанной, преобла дающим процессом является деструкция, приводящая к пониже нию предела прочности при растяжении вулканизата натураль ного каучука. При вулканизации натурального каучука в уело ВИЯХ изоляции от кислорода максимумов и минимумов на кине тичееких кривых вулканизации не наблюдается, кинетические кривые имеют монотонный характер. [c.73]

    Рис 3,7. Влияние продолжительности механической деструкции натурального каучука на олскулярно-. 1ассовое распределение (цифры у кривых —продолжите чыюсть вальцевания в мин. л — относительное содержание фракций с ДВИНОЙ молекулярион массой) [c.217]

    Тобольский и Меркурио изучали окислительную деструкцию натурального каучука путем его окисления в бензольном растворе при 60—80° С в присутствии инициаторов, генерирующих свободные радикалы. Разрыв углерод-углеродных связей каучука с образованием карбонильных соединений протекает, по-видимому, через промежуточные продукты аналогичного типа  [c.472]

    Кинетика вулканизации смолонаполненных каучуков типа БС-45АК аналогична кинетике процесса вулканизации каучуков общего назначения С повышением температуры вулканизации до 200° С растет прочность, снижается плато вулканизации, при этом относительное и остаточное удлинения существенно не изменяются, что свидетельствует о, специфике вулканизации высокостирольных композиций При повышений температуры высокостирольный полимер деструктируется. Такая деструкция может осуществляться за счет термоокислительной деструкции бутадиеновых звеньев, а также при деполимеризации высокостирольных частей макромолекулы Количество и тип поперечных связей, так же как молекулярное строение каучука, характеризуют статическую и динамическую прочность вулканизата. В настоящее время следует, считать установленным, что в зависимости от степени поперечного сшивания статическая прочность вулканизатов изменяется по кривой с максимумом. У натурального каучука этот максимум соответствует концентрации поперечных связей 2,0 — 6,0 10 слг гУ полиизопре-нового — 3,0 — 5,0 10 см , бутадиен-стирольного — 1 — — 3,0 10 см- , карбоксилатного — 2,0 — 4,0 10 сжЧ Исходя из представлений, что разрушение вулканизата состоит из элементарных актов разрыва цепей была развита теория, объясняющая экстремальный характер этой зависимости. [c.44]

    Повышение пластичности обусловлено снижением молекулярной массы (каучуков в процессе деструкции.. На рис. 34 и 35 показано изменение пластичности натурального и синтетического каучуков во временп [235]. Форма кривых напоминает перевернутые графики приводимые выше. Темп нарастания пластичности, по-видимому, зависит от природы каучука, причем натуральный каучук пластадируется быстрее синтетических. Это объяаняется не только различием сил межмолекулярного взаимодействия, но и соотношением энергии свободных макрорадикалов, которые образуются при механокрекинге каучуков. [c.85]

    В первом приближении этому факту дается следующее толкование [305]. При механическом разрыве цепей натурального каучука по наиболее слабым связям (а-метнленовые группы) образуются относительно мало активные аллильные полиизопреновые макрорадикалы. Малая активность радикалов практически исключает их взаимодействие, например, с а-нафтолом, и незначительная линейная деструкция в атмосфере азота, вероятно, протекает за счет д,испропорщ1онирования самих макрорадикалов или за счет случайных примесей. На воздухе аллильные радикалы реагируют с кислородом, образуя перекисные аллильные макрорадикалы значительно более активные, чем просто аллильные  [c.126]

    Подобное взаимное влияние компонентов на свойства смеси и условия механокрекинга каждого из них довольно сложно и зависит от целого ряда факторов соотношения компонентов, прочности цепей, их совместимости и т. д. Так [437], полиметилметакрилат в смеси с натуральным каучуком почти не подвергается крекингу при одновременной интенсивной деструкции каучука, хотя по соотношению физических состояний обоих компонентов следова- [c.183]


Смотреть страницы где упоминается термин Натуральный каучук деструкция: [c.251]    [c.64]    [c.109]    [c.30]    [c.296]    [c.222]    [c.248]    [c.65]    [c.65]    [c.109]    [c.115]    [c.39]    [c.82]   
Технология резины (1967) -- [ c.61 , c.63 , c.64 , c.73 ]

Технология резины (1964) -- [ c.61 , c.63 , c.64 , c.73 ]




ПОИСК





Смотрите так же термины и статьи:

Механохимическая деструкция при мастикации эластомеров натуральные и синтетические каучуки)

Натуральный каучук

Натуральный каучук термическая деструкция



© 2025 chem21.info Реклама на сайте