Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полифункциональность

    Для вулканизации эпихлоргидриновых каучуков, имеющих насыщенный характер, не может быть применена сера. Эти каучуки содержат хлорметильные группы (см. структуры I и И) с подвижным хлором и вулканизуются с помощью полифункциональных аминов и тиосоединений, например этилентиомочевины, меркапто- [c.580]

    В ароматических полифункциональных соединениях функциональные группы различаются по реакционной способности, что связано со спецификой химического строения этих соединений, для которых, как известно, характерно взаимное влияние заместителей, находящихся в одном и том же ядре [9, с, 35]. Это хорощо видно на примере 2,4-толуилендиизоцианата, применяемого для синтеза полиуретанов [3, с. 62]. Различие в реакционной способности обеих функциональных групп может быть связано с несколь- [c.158]


    В макромолекулах эластомеров обычно имеет место статистическая разветвленность, возникающая либо при полимеризации в результате реакций передачи активных центров на полимерную цепь, либо при поликонденсации бифункциональных мономеров в присутствии небольших примесей полифункциональных соединений. [c.24]

    Для полифункциональных мономеров степень превращения в точке гелеобразования зависит от их функциональности. Для системы, содержащей функциональные группы А и В со средней функциональностью /ср, соотношение между степенью завершенности [c.166]

    Одна молекула ингибитора, реагируя последовательно с двумя пероксидными или алкильными радикалами, обрывает две цепочки. В соответствии с этим стехиометрический коэффициент ингибирования / = 2. Если ингибитор представляет собой полифункциональную молекулу, в которой каждая группа (фенольная или аминная) реагирует независимо, то f=2 , где п — число ингибирующих функциональных групп в молекуле. Встречаются случаи, когда среди продуктов превращения ингибитора есть соединения, также обладающие ингибирующей активностью. Тогда />2 (3, реже 4). Известны случаи, когда одна молекула в окисляющемся соединении обрывает несколь- [c.117]

    Дж. У э й, Ч. П р е т е р. Структура и анализ сложных реакционных систем. Катализ. Полифункциональные катализаторы и сложные реакции. Изд. Мир , 1965, стр, 68-280. [c.118]

    При реакциях передачи цепи плотность разветвления, естественно, определяется соотношением скоростей реакций разветвления и роста, в поликонденсационных процессах — долей полифункциональных звеньев. В связи с тем, что энергия активации реакций разветвления и, соответственно, температурный коэффициент их скорости, выше энергии активации роста цепи, разветвленность большого числа полимеров увеличивается с ростом температуры разветвленность также увеличивается с глубиной полимеризации, так как при этом возрастает вероятность взаимодействия активных центров с полимерными цепями. [c.25]

    Интересный тип высокопрочных ненаполненных резин представляют собой резины на основе некристаллизующихся каучуков, содержащих карбоксильные и омыляемые сложноэфирные группы, вулканизация которых осуществляется окисями металлов. Структуру этих резин также можно рассматривать в рамках схемы, приведенной выше-на рис. 7,6 при этом роль полифункциональных узлов играют микрокристаллиты солевой группы поперечных связей, несовместимые с каучуковой матрицей. Особенность структуры таких вулканизатов состоит в том, что солевые связи между макромолекулами, образующиеся при вулканизации, являются весьма лабильными. При растяжении резин эти связи могут диссоциировать, что сопровождается их перераспределением, приводящим к выравниванию напряжений в результате прочность резин достигает 40—50 МПа. [c.86]


    Это можно объяснить тем, что полифункциональная молекула является как бы жесткой матрицей , которая благодаря наличию многих центров связывания стабилизирует структуру окружающей воды в некой заданной конфигурации. В результате уменьшается релаксационная составляющая сжимаемости и теплоемкости. Температурная зависимость сжимаемости воды приближается к линейной, что свойственно нормальной жидкости. Заметим, что определению стабилизация структуры воды разные авторы придают различный смысл. Здесь под ним понимается сохранение геометрии водородных связей и уменьшение разнообразия возможных конфигураций. [c.55]

    В последнее время был выявлен еще один структурный параметр каучуков, который может оказывать существенное влияние на прочностные свойства резин. Речь идет о содержании дискретных полимерных частиц —частиц микрогеля, имеющих высокую молекулярную массу. Строение частиц микрогеля растворной полимеризации является более благоприятным, чем частиц эмульсионного микрогеля [12]. Благодаря большому количеству свободных концов, способных взаимодействовать с поверхностью сажевых частиц, а также благодаря специфическому строению, напоминающему строение полифункциональных узлов, частицы растворного микрогеля играют роль активного наполнителя. В то же время частицы плотного микрогеля эмульсионной полимериза- [c.86]

    Известно, чтй ряд каучуков при серной вулканизации Дак)Т ненаполненные резины с высокой прочностью. Это —каучуки регулярного строения, способные к кристаллизации НК, синтетический полиизопрен с высоким содержанием г ис-1,4-звеньев, некоторые типы этилен-пропилен-диеновых каучуков, транс-полипентена-мер, полихлоропрен и др. При растяжении резин на основе этих каучуков образуются микрокристаллиты, которые играют роль полифункциональных узлов сетки по-видимому, их действие сходно с действием частиц активного наполнителя. Действительно, нарастание напряжения при растяжении резин, полученных на основе кристаллизующихся каучуков, происходит быстрее, чем при растяжении резин на основе аморфных каучуков, имеющих равную плотность узлов вулканизационной сетки [35]. [c.85]

    При поликонденсации мономеров А—А и В—В в присутствии полифункционального мономера А/ последний является разветвляющей структурной единицей, а сегменты, заключенные между точками разветвления, называются цепными. [c.167]

    В случае нелинейной поликонденсации, когда протекает реакция между соединениями типа А—А, В—В с добавлением небольших количеств полифункционального соединения типа Af, ММР описывается уравнением  [c.169]

    Жидкие полифункциональные тиоколы относятся к статистическим разветвленным полимерам с трифункциональными узлами разветвления, и ширина М.М.Р их зависит от молекулярной массы и от степени разветвленности полимера (табл. 2). [c.560]

    Таким образом, исследование ММР жидких тиоколов подтвердило принципиальное структурное отличие бифункциональных полимеров от их полифункциональных аналогов. [c.560]

    П. Вейс, сб. Катализ, полифункциональные катализаторы и сложные реакции . Изд. Мир , 1965, стр. 9. [c.59]

    Высокая реакционная способность фурановых соединений, обусловленная особенностями строения и полифункциональностью фуранового ядра, обес- [c.58]

    В последние годы за рубежом в качестве полифункциональных присадок широкое распространение получили серу-, фосфор- и азотсодержащие соединения. Эти присадки обладают противоизносными и противозадирными свойствами и одновременно улучшают антиокислительные и противокоррозионные свойства масел. Так, рекомендуются [пат. США 2586656, 3865740] соединения, получаемые по реакции Манниха конденсацией ДТФ кислот с формальдегидом и аминами. [c.124]

    Полифункциональные присадки для дизельных топлив [c.183]

    Повышение термоокислительртой стабильности реактивных топлив обеспечивают технологическими методами (гидроочисткой) и введением специальньсх присадок (антиокислительных, диспергирующих или полифункциональных). [c.123]

    Компаунды и герметики на основе силоксановых жидких каучуков вулканизуются при комнатной или более низкой температуре,, реже при 50—70°С, за счет конденсации концевых ОН-групп полимера между собой [реакция (4)] и с введенными в композицию полифункциональными структурирующими агентами, например метилтриацетоксисиланом, этилсиликатом [реакция (3)]. Вулканизацию однокомпонентных композиций холодного отверждения, хранящихся в герметичной таре, катализируют слабые кислоты или слабые основания, образующиеся в результате гидролиза структурирующей агента при контакте смеси с влагой воздуха. В двухкомпонентные композиции, смешиваемые непосредственно перед применением, входят катализаторы вулкалтгаацшт, ассортимент которых весьма широк. Чаще всего используются оловоорганические соедтшния. Известны также композиции, отверждаемые при 20—70°С за счет реакции гидросилилирования и содержащие в своем составе алкенил и гидридсилоксаны и платиновый катализатор [3, 72]. [c.490]


    Гидрокрекинг — каталитический процесс переработки не — ф"яных дистиллятов и остатков при умеренных температурах и ПС вышенных давлениях водорода на полифункциональных ката — Л1- заторах, обладающих гидрирующими и кислотными свойствами (а в процессах селективного гидрокрекинга — и ситовым эф — ф ктом). [c.224]

    Сульфиды и оксиды молибдена и вольфрама с промоторами являются бифункциональными катализаторами (с п — и р — прово — дикостями) они активны как в реакциях гидрирования-дегидри— рования (гомолитических), так и в гетеролитических реакциях гидрогенолиза гетероатомных углеводородов нефтяного сырья. Однако каталитическая активность Мо и W, обусловливаемая их дырочной проводимостью, недостаточна для разрыва углерод — угл зродных связей. Поэтому для осуществления реакций крекинга углэводородов необходимо наличие кислотного компонента. Следовательно, катализаторы процессов гидрокрекинга являются по существу минимум трифункциональными, а селективного гидрокрекинга — тетрафункциональными, если учесть их молекулярно — ситовые свойства. Кроме того, когда кислотный компонент в катализаторах гидрокрекинга представлен цеолитсодержащим алюмосиликатом, следует учесть также специфические крекирующие свойства составляющих кислотного компонента. Так, на алюмоси — ЛИР ате — крупнопористом носителе — в основном проходят реакции первичного неглубокого крекинга высокомолекулярных углеводо — ро ов сырья, в то время как на цеолите — реакции последующего бо/ ее глубокого крекинга — с изомеризацией среднемолекулярных углеводородов. Таким образом, катализаторы гидрокрекинга можно отвести к полифункциональным. [c.227]

    Следует подчеркнуть, что в обсуждаемых до сих пор работах в качестве катализаторов дегидроциклизации, как правило, использовали металлы в виде черней, пленок, а также Pt и Pd, отложенные на активированном угле, SiOg или некислом АЬОз, т. е. такие катализаторы, в которых носитель либо отсутствовал, ли о по крайней мере не влиял явным образом на каталитические свойства. Очевидно, что в присутствии би- и поли-функциональных металлоксидных катализаторов реакции дегидроциклизации могут проходить несколько иначе. Кроме того, течение этих реакций может осложняться рядом побочных и вторичных процессов. Краткий обзор этих работ, посвященных исследованию реакций дегидроциклизации на би- и полифункциональных металлоксидных катализаторах, приведен в следующем разделе. [c.244]

    Важнейшей из характеристик полимерных сеток является число эластически активных цепей в единице объема полимера V. Эластически активной называют цепь линейного строения, заключенную между такими двумя соседними узлами сетки, от каждого из которых к поверхности образца исходят по меньшей мере три независимых ветви [7]. У вулканизованных каучуков обычно V = 10 — — 100 моль/м . V является функцией либо общего числа сшивок, молекулярной массы и молекулярно-массового распределения исходных макромолекул, если сетка образуется путем вулканизации, либо степени завершенности реакции и функциональности мономеров, если сетка формируется в процессе полифункциональной поликонденсации. [c.42]

    Различия в свойствах наполненных и ненаполненных резин объясняются различиями в структуре этих материалов. Ненапол-ненную резину можно представить в виде сетки, в узлах которой, в основном, находятся тетрафункциональ ные сшивки, содержащие —С—С— или —С—5ж—С— связи (рис. 7,а), строение узлов зависит от условий вулканизации. Наполненный вулканнзат содержит частицы сажи, связанные с каучуком, которые можно рассматривать как полифункциональные узлы сеточной структуры (рис. 7,6). [c.84]

    К, поликонденсационным процессам ранее относили реакции образования полимеров путем взаимодействия полифункциональных мономеров с выделением низкомолекулярных продуктов. Однако такое определение не охватывает все известные в настоящее время процессы данного типа. Так, образование типичных конденсационных полимеров — полиуретанов и полимочевин — из диизоцианатов и диолов или соответственно диаминов протекает без выделения низкомолекулярных продуктов. Более правильно при определении процесса поликонденсации учитывать особенности механизма образования полимера. Поэтому целесообразно рассматривать поликонденсацию как процесс получения высокомолекулярных соединений путем взаимодействия полифункциональных мономеров, протекающий по ст упенчатому механизму. [c.156]

    В блJцe приведены средние молекулярные массы и отношение Му,1Мп для серии полифункциональных олигомерных поли-этиленадипинатов, полученных с применением небольших количеств триолов различной природы [23, с. 54]. [c.169]

    Другим методом синтеза линейных трехблочных термоэластопластов может быть метод сочетания живых двухблочных сополимеров полистирол — полидиен — литий (поли-а-метилстирол — полидиен — литий). Их получают при использовании в качестве сочетающих агентов бифункциональных соединений, например 1,2-дибромэтана [18, 19], сероокиси углерода [16]. Кроме линейных термоэластопластов этим же способом получают звездообразные (радиальные) полимеры, если применяют полифункциональные сочетающие агенты, например 51С14 [19], дивинилбензол [20]. [c.286]

    Этот способ обеспечивает образование бифункциональных полиэфиров с минимальным содержанием воды (не более 0,03%), карбоксильных групп (кислотное число менее 0,5) и других примесей [2, с. 86]. Для синтеза полифункциональных сложных полиэфиров наряду с диолами применяют небольшие количества низкомолекулярных триолов, например глицерина и 1,1,1-триметил-олпропана. [c.524]

    Еще в 1946 г. Наумовым [91 ], вероятно, впервые было строго доказано на примере реакции изомеризации окиси этилена, что механическая смесь двух компонентов (силикагеля и окиси алюминия) в условиях, исключающих их взаимодействие (температура 200° С), обладает значительно более высокой активностью, чем каждый из компонентов в отдельности. В 1958 г. метод механического смешивания платинированного угля с алюмосиликагелем был предложен для получения активных катализаторов гидродеалкили-рования [92]. В 1964 г. Никс и Вейз показали эффективность такого приема при проведении ароматизации парафинов на смеси алюмосиликатного и дегидрирующего платинового катализаторов [93]. В настоящее время полифункциональные катализаторы широко применяют в основном в процессах превращения углеводородов [94, 95]. Чтобы провести сложное превращение веществ, приходится иметь дело с многоступенчатым процессом, протекающим в виде серии последовательных и параллельных реакций. В этом случае часто недостаточно эффективно применять один катализатор, так как при этом ускоряется лишь одна ступень процесса. [c.47]

    В качестве полифункциональных присадок, ловышающих противоизносные, противозадирные свойства и окислительную стабильность смазочных масел и гидравлических жидкостей, предла- [c.118]


Библиография для Полифункциональность: [c.97]    [c.48]   
Смотреть страницы где упоминается термин Полифункциональность: [c.315]    [c.7]    [c.176]    [c.16]    [c.27]    [c.156]    [c.170]    [c.379]    [c.636]    [c.90]    [c.143]    [c.152]    [c.96]    [c.184]   
Смотреть главы в:

Волокна из синтетических полимеров -> Полифункциональность


Лакокрасочные покрытия (1968) -- [ c.85 ]

Волокна из синтетических полимеров (1957) -- [ c.82 , c.83 ]




ПОИСК







© 2024 chem21.info Реклама на сайте