Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каучук окислительная деструкция

    Однако методом озонирования (разновидность окислительной деструкции) было доказано, что в действительности макромолекула каучука имеет форму открытой цепи. При этом в результате разложения полученного озонида натурального каучука были выделены и идентифицированы следующие продукты (в процентах от массы каучука)  [c.10]

    При термоокислительной пластикации дивинил-стирольного каучука имеют место два противоположных по своему характеру процесса изменения структуры каучука окислительная деструкция и структурирование каучука. Окислительная деструкция вызывает повышение пластичности каучука, а структурирование приводит к ее понижению. При оптимальных условиях процесса более эффективно протекает окислительная деструкция и поэтому наблюдается повышение пластичности. Как видно на рис. 47, пластичность каучука при термоокислительной пластикации постепенно повышается (жесткость по Дефо — понижается), но, достигнув некоторой максимальной величины, начинает понижаться вследствие структурирования каучука. При температуре выше 135 °С скорость структурирования возрастает (восходящая ветвь кривой становится более крутой). При значительной продолжительности процесса структурирование может привести к затвердеванию, к понижению растворимости каучука и резкому снижению физико-механических свойств вулканизатов. [c.250]


    Высокая реакционная способность полиизопрена требует применения эффективных методов его стабилизации. Систематические исследования показали необходимость обеспечения высокой степени чистоты полиизопрена в отношении содержания в нем примесей металлов переменной валентности (железо, медь, титан), так как соединения этих металлов ускоряют окислительную деструкцию каучука. Другой способ повышения окислительной стойкости полимера —пассивация переходных металлов, остающихся в каучуке, путем перевода их соединений в неактивную форму, не оказывающую каталитического влияния на окисление полимера. [c.221]

    Стойкость полимера к действию окислителей зависит от его строения и прежде всего от наличия легкоокисляющихся групп и связей в макромолекуле. Из карбоцепных высокомолекулярных соединений больше склонны к окислению ненасыщенные полимерные углеводороды, например натуральный и бутадиеновый каучуки, окислительная деструкция которых протекает интенсивно на свету и при нагревании. Энергичным окисляющим агентом является озон. При действии озона на натуральный каучук на свету происходит сильная деструкция, что следует учитывать при хранении или эксплуатации готовых изделий из этого полимера. [c.48]

    Скорость окислительной деструкции полимеров значительно возрастает в присутствии веществ, легко распадающихся на свободные радикалы (рис. 33 и 34), а также в присутствии ничтожных количеств (сотые и тысячные доли процента от массы полимера) металлов переменной валентности, таких, как Ре, Си, Мп, N1. Эти металлы участвуют в окислительно-восстановительных реакциях и ускоряют образование свободных радикалов. Так, в присутствии стеарата железа значительно возрастает скорость окисления натурального каучука (рис. 35). Влияние металлов в данном случае, по-видимому, аналогично их влиянию на процесс цепной полимеризации. [c.271]

    Бутилкаучук освобождают от тары и режут на куски, удобные для взвешивания и загрузки на оборудование. Процесс механической пластикации на холоду для него неэффективен, что объясняется высокой степенью насыщенности каучука, ограничивающей возможность развития окислительной деструкции. Даже длительная обработка каучука на холодных вальцах в течение 60 мин заметно не повышает пластичности. При нагревании каучука за счет тепла, выделяющегося в процессе механической обработки его на вальцах, повышается пластичность, понижается эластическое восстановление каучука, в связи с чем облегчается смешение и другие технологические процессы. Поэтому обработку бутилкаучука и резиновых смесей из него производят при температурах 75—110°С. [c.251]


    Устойчивость полимера к действию кислорода, озона и других окислителей зависит от его строения и прежде всего — от наличия легкоокисляющихся групп и связей в макромолекуле. Из карбо-цепных высокомолекулярных соединений окисляются ненасыщенные углеводороды, например натуральный и бутадиеновый каучуки. Окислительная деструкция протекает более интенсивно на свету и при нагревании. [c.24]

    Не рекомендуют применять высокие температуры в следующих случаях 1) при вулканизации многих резиновых изделий на основе натурального каучука, так как натуральный каучук легко подвергается окислительной деструкции при повышенных температурах и весьма чувствителен к перевулканизации 2) в процессе вулканизации резиновых изделий больших размеров, так [c.336]

    Ускорители пластикации каучука. Некоторые каучуки (например, натуральный и многие синтетические) обладают недостаточной пластичностью и нуждаются в предварительном размягчении перед их дальнейшей переработкой. Для размягчения некоторых типов каучуков необходима их окислительная деструкция. [c.498]

    Ярким примером такого воздействия является торможение окислительных реакций добавками незначительных количеств некоторых веществ — ингибиторов, или антиоксидантов. Вопрос о торможении химических процессов вообще и окислительных в частности занимает большое место в химической кинетике он является составной частью общей проблемы реакционной способности. Однако помимо теоретического аспекта, большую роль здесь играют запросы и нужды практики. С этим вопросом тесно связаны такие проблемы, как стабилизация неустойчивых, легко окисляющихся продуктов, крекинг-бензинов, нефтей, смазочных масел, борьба с детонацией в двигателях внутреннего сгорания, предохранение каучуков и резин от окисления и сгорания, предотвращение окислительной порчи пищевых продуктов, борьба с окислительной деструкцией полимеров в процессе их переработки и эксплуатации и большой круг других вопросов. [c.167]

    В настоящее время совокупность экспериментальных данных по влиянию металлов переменной валентности на окислительную деструкцию и стабильность синтетических каучуков позволяет определить максимально допустимые количества металлов, которые позволяют обеспечить стабильность каучука без дополнительного введения агентов, пассивирующих эти примеси. [c.631]

    Рмс. 33. Зависимость скорости окислительной деструкции натрий-бутадиенового каучука при 100 °С ог содержание инициатора  [c.271]

    В последние годы стали применяться вещества, ускоряющие пластикацию каучука. Установлено несколько веществ, принадлежащих к различным классам органических соединений, способных ускорять окислительную деструкцию каучука ароматические меркаптаны, несимметричные производные гидразина, нитрозодиметиланилин. Эти вещества при добавке к каучуку в небольших количествах при обычной пластикации на вальцах или в резиносмесителях позволяют добиваться значительного повышения эффективности пластикации при минимуме расхода энергии. Многие из этих веществ ускоряют также и термоокислительную пластикацию. [c.244]

    Окислительная деструкция (старение) каучуков и резин протекает при облучении со значительно большей скоростью, чем при нагревании. Так, жесткость пленок из бутадиен-стирольного каучука после 20 сут естественного облучения в марте увеличилась на 870%, а в мае на 1700%, в то время как в темноте жесткость увеличилась за 3 года всего на 200%. [c.291]

    Непосредственное механическое воздействие на каучук при пластикации приводит к разрушению глобулярной структуры каучука и к разрыву цепей полимера, т. е. к механической деструкции. Возможность механической деструкции каучука подтверждается повышением пластичности при механической обработке на холодных вальцах таких эластичных полимеров, как полиизобутилены, которые вследствие отсутствия двойных связей не подвержены окислительной деструкции. [c.235]

    ОНИ достаточно легко могут скользить относительно друг друга. По этой причине эффективность процесса пластикации на вальцах при повышении температуры (до 120 °С) снижается. При пластикации при температурах свыше 120 °С наблюдается ускорение окислительной деструкции каучука и эффективность процесса пластикации значительно возрастает подобные температурные условия создаются при пластикации в быстроходных резиносмесителях, в которых температура пластиката достигает 160—180 С. Влияние температуры и различных сред нп процесс пластикации натурального каучука в течение 50 мин приведено на рис. 41. [c.236]

    Мягчители не только участвуют в процессе регенерации, но и образуют один из компонентов регенерата, повышая его пластичность. Кроме того, непредельные соединения, содержащиеся в мягчителях, могут взаимодействовать как со свободной серой, содержащейся в вулканизате, так и с серой, выделяющейся при тепловой обработке при распаде полисульфидных связей благодаря этому также уменьшается возможность структурирования каучука . Согласно представлениям, высказанным разными авторами, в присутствии мягчителей, имеющих в своем составе непредельные соединения, склонные к окислению или образованию перекисей, происходит сопряженное окисление мягчителя и вулканизата. Такие мягчители в условиях регенерации образуют нестойкие перекисные соединения, распадающиеся на радикалы, которые инициируют окислительную деструкцию вулканизованного каучука. [c.370]


    Среди кинетических методов, основанных на контроле физико-химических параметров окисляющейся композиции каучук-стабилизатор, следует отметить исследование кинетики изотермической кристаллизации полиизопренового каучука [48, 49] дилатометрическим методом. Определение полупериода, глубины и максимальной скорости кристаллизации чувствительно к любым структурным изменениям, происходящим в каучуке. Так, скорость кристаллизации каучука мало меняется на ранних стадиях его окислительной деструкции и резко снижается при высокой степени превращения. Таким образом, при окислении наблюдается уменьшение кристаллизационной способности полиизопрена степень уменьшения зависит от природы используемого ингибитора отмечено избирательное действие антиоксидантов различной природы на изменение кинетических параметров кристаллизации. [c.429]

    Механическое воздействие на каучук наиболее эффективно при низких температурах (30—50 °С), так как при этом подвижность молекул каучука незначительна. При повышении температуры ускоряется окислительная деструкция молекул, снижающая когезионную прочность каучука до 30—40 %. [c.12]

    Воздействие кислорода воздуха приводит к окислительной деструкции молекул и их структурированию. При этом усталостная прочность резко снижается. Присутствие озона даже в небольших концентрациях вызывает растрескивание резин, причем скорость образования трещин возрастает с увеличением деформации. Наибольшей выносливостью в этом случае обладают каучуки, содержащие наименьшее количество химически активных связей. [c.135]

    Термическое старение протекает, как правило, в присутствии кислорода воздуха, повышающего интенсивность процесса за счет окислительной деструкции молекулярных цепей каучука. Поскольку окисление — цепной автокаталитический процесс вследствие образования свободных активных радикалов, ингибирование — стабилизация каучуков и резин не обеспечивает их достаточной стойкости к старению и приводит к снижению основных эксплуатационных свойств (рис. 12.1). [c.174]

    Многие полимеры подвергаются механодеструкции в процессе размола или вальцевания. При так называемой мастикации натурального каучука происходит механически инициируемая, авто-окислительная деструкция, которая приводит к снижению молекулярной массы, что делает более удобным его переработку [23]. [c.248]

    Каучук натуральный (НК) — высокомолекулярный углеводород (СзНв) , полимер изопрена содержится в млечном соке (латексе) гевеи, кок-сагыза и других растений. Не растворяется в углеводородах и их производных (бензине, бензоле, хлороформе, сероуглероде и т. д.). В воде, спирте, ацетоне К. н. практически не набухает и не растворяется. Уже при комнатной температуре НК присоединяет кислород, происходит окислительная деструкция (старение каучука), при этом уменьшается его прочность и эластичность. При температуре выше 200 °С К. н. разлагается с образованием низкомолекулярных углеводородов. При взаимодействии К. н. с серой, хлористой серой, органическими пероксидами (вулканизация) происходит соединение через атомы серы длинных макромолекулярных К. н. с образованием сетчатых структур. Это придает К. н. высокую эластичность в широком интервале температур. К. н. перерабатывают в резину. В сыром виде применяют не более 1% добываемого К. и. (резиновый клей, подошва для обуви). Более 60 % К. н. используют для изготовления автомобильных шин. [c.65]

Рис. 196. Зависимость скорости окислительной деструкции каучуков от количества инициатора и стеарата железа Рис. 196. <a href="/info/361093">Зависимость скорости</a> окислительной деструкции каучуков от <a href="/info/1057057">количества инициатора</a> и стеарата железа
    В присутствии кислорода резко возрастает скорость деструкции натурального каучука под влиянием ультрафиолетового света, происходит фотоокислительная деструкция. Облучение ускоряет окислительную деструкцию каучуков и резин значительно больше, чем нагревание. При действии естественных погодных условий полиэтилен разрушается в течение 2—3 лет в темноте при обычной температуре он совсем не деструктируется. [c.637]

    Одним из путей подавления каталитической активности примесей металлов переменной валентности в процессах окисления является перевод их в неактивную форму за счет образования комплексов или хелатов. В качестве таких агентов могут применяться антиоксиданты, относящиеся к производным /г-фениленди-амина [30, 31], которые пассивируют каталитическое действие меди, марганца и железа в процессе окисления каучуков. Аналогичный эффект наблюдался при введении в высокомаслонапол-ненный бутадиен-стирольный каучук, содержащий повышенное количество меди и железа, таких антиоксидантов, как п-гидрокси- фенил-р-нафтиламин (параоксинеозон) или меркаптобензимидазол [31]. Достаточно эффективными пассиваторами меди в процессе окислительной деструкции каучуков является щавелевая кислота, аминобензойные кислоты, продукт конденсации бензальдегида с гидразином [41]. [c.631]

    Помимо 7-облучения и ультрафиолетового облучения, существуют другие методы образования радикалов в полимерах — механическая деструкция (вальцевание) [32, 36], окислительная деструкция и нагревание или обугливание. При механической деструкции образуются радикалы, которые были обнаружены с помощью ЭПР. Как правило, эти радикалы подобны тем, которые образуются при облучении, либо их спектры не имеют сверхтонкой структуры, необходимой для идентификации. В некоторых работах [64, 200] сообщается, что примесь кислорода может облегчать образование радикалов при термической обработке полимеров. Были предприняты некоторые попытки изучить вулканизацию каучука с помощью ЭПР [50, 51]. Был получен сигнал ЭПР, но он оказался недостаточным для обнаружения сверхтонкой структуры, необходимой для идентификации радикалов. Различные сигналы ЭПР дают также угли [90] и асфальты [65]. Уголь, образующийся при деструкции полимера, дает сигналы на определенных стадиях карбонизации. [c.462]

    При термоокислительной пластикации дивинил-стирольного каучука имеют место два противоположные по своему характеру процесса изменения структуры каучука окислительная деструкция и структурирование каучука. Окислительная деструкция вызывает повышение пластичности каучука, а структурирование приводит к ее понижению. При опти.мальньгх условиях процесса более эффективно протекает окислительная дест >укция и поэтому [c.250]

    Аналогичный процесс наблюдается при длительном термическом воздействии на синтетические каучуки. Во время такой вторичной термической полимеризации необходимо предотвращать возмох<ность окислительной деструкции макромолекул, что достигается нагреванием полимера без доступа во.здуха или i атмосфере азота. [c.238]

    Наибольшей склонностью к окислительному старению обладают диеновые каучуки, что обусловлено особенностями их структуры. Поэтому исследования окислительной деструкции, приводящей к потере каучуками ценных эксплуатационных свойств, и стабилизации, способствующей продлению срока службы полимеров и изделий из них, весьма важны. Решение проблемы термоокислительной деструкции и стабилизации имеет более чем полувековую историю, связанную с именами Фармера, Болланда, Кузьминского [23], Пиотровского [24] и других для интерпретации результатов ими бьша успешно использована теория цепных реакций Н.Н. Семенова [25]. Строгая количественная теория термоокисления полимеров с учетом их морфологических особенностей развита в работах школы академика Н.М. Эмануэля [26]. [c.404]

    Во многих патентах просматривается очевидная идея поднять усталостную выносливость боковин путем использования в них каучуков, стойких к окислительной деструкции. Это углеводородные каучуки с небольшой степенью ненасыщеннос-ти или полностью ненасыщенные. [c.126]

    Тобольский и Меркурио изучали окислительную деструкцию натурального каучука путем его окисления в бензольном растворе при 60—80° С в присутствии инициаторов, генерирующих свободные радикалы. Разрыв углерод-углеродных связей каучука с образованием карбонильных соединений протекает, по-видимому, через промежуточные продукты аналогичного типа  [c.472]

    Для равномерного распределения полимеров необходимо предварительное приготовление маточных смесей. Технологические ре-лшмы совмещения с каучуком зависят от фракционного состава пластика и температуры размягчения. Пластичность каучука, используемого для совмещения, должна быть определенной в зависимости от типа применяемого оборудования и соотношения компонентов, так как с увеличением продолжительности обработки происходит окислительная деструкция, снижение молекулярного веса полимеров и физико-механических показателей.  [c.39]

    Все это подтверждает вывод о том, что в перечисленных случаях имеет место механическая активация типичных для данного полимера и среды химических деструктивных процессов. Так, показано [101], что энергия активации процесса окисления Kajrqy-ка снижается при его многократном деформировании. При этом некоторые авторы полагают, что образования свободных радикалов еще не происходит. Кислород присоединяется к активированным макромолекулам каучука, и осуществляется окислительная деструкция, энергия активации которой понижена за счет действия механического фактора. [c.39]

    Приведенные данные говорят о почти столь же значительном влиямии Кислорода на процесс механической деструкции предельных карбо- и гетероцвпных высокомолекулярных соединений, как и на деструкцию непредельных каучуков. Это соизмеримое влия- ние кислорода пр-и значительном различии в устойчивости к окислительной деструкции дает основание высказать цредяоложение [c.123]

    Окислительную деструкцию каучука можно ускорить добавлением некоторых органических веществ. К числу таких ускорителей пластикации относятся, например, тионафтол, тиофенолы и др. Товарные марки ускорителей пластикации — ренацитьи пептоны и т. д. (стр. 365, 366). [c.498]

    Механическая пластикация необходима для размягчения натурального и некоторых синтетических каучуков. Этот процесс осуществляется путем перетирания жесткого полимера между валками вальцов (стр. 509), или в рабочей камере резиносмеси-теля (стр. 511), или же в червячном прессе-пластикаторе (стр. 513). Под действием механических усилий растяжения и сдвига молекулярные цепи полимера рвутся и становятся более короткими. При этом протекают и химические процессы, в том числе окислительная деструкция каучука под влиянием кислорода воздуха. Частично (в меньшей степени) происходит и обратный процесс—структурирование (сшивка). В результате механо-хими-ческого процесса пластикации молекулярный вес каучука уменьшается. [c.507]

    Еще ранее при изучении продуктов окислительной деструкции полихлоропрена различных видов было показано [2, 3], что все они состоят главным образом из транс-1,4-звеньев. В результате более подробного исследования структуры эмульсионного полихлоропрена с помощью инфракрасной спектроскопии было выявлено, что содержание транс-1,4-звенье1в меняется в зависимости от температуры лолимеризации от 94% (—40°С) до 7% (100°С). В стан-дартно.м каучуке (температура полимеризации 40 °С) это содержание составляет приблизительно 87% независимо от природы инициатора и регулятора. Кроме того, 10% составляют звенья цис-1,4, около 2% —цис-1,2 1и 1% —цис-3,4 содержание всех этих звеньев, нарушающих регулярность цепи, существенно возрастает с повышением температуры полимеризации. [c.225]

    Эффект влияния минеральных солей иа структуру материала зависит прежде всего от способа их введения в полимер [1]. Были исследованы пленки (I), полученные отливом из раствора, содержащего одновременно полимер и соль, и пленки (II), полученные из дисперсий (латексов) полимеров методом ионного отложения [2] на поверхности измельченной соли. В исследовании использовались только хлориды металлов, как соли, анион которых не способен вызывать кислотную или окислительную деструкцию полимера. В качестве пленок I были применены полученные на основе смешанного спирторастворимого полиамида (марки АК 60-40) пленки, содержащие 1,37 м-моля соли. Такое количество соли эквимолярно наличию в выбранном полимере свободных ко-гезионно ненасыщенных функциональных групп [3]. Пленки II получались из латекса карбоксилсодержащего каучука (марки СКС 30-1) на следующих фиксаторах хлориде бария, хлориде бария- -хлориде хрома (III) (в разных соотношениях) и хлориде хрома (III) [4]. Все пленки обрабатывались водой для удаления соли, не связанной с полимером, в результате чего получался материал, обладающий пористостью различного характера. [c.337]

    Иногда специфическое влияние металла на полимер способствует значительному повышению прочности связи. Например, широко известно каталитическое действие меди на натуральный каучук, нриводяш ее к окислительной деструкции [155]. Этим объясняется, очевидно, высокая адгезия натурального каучука к меди [129]. Особенно суш,ественно влияние природы металла на адгезионную прочность после теплового старения. Оказалось, что пониженной теплостойкостью обладают клеевые соединения меди, никеля, железа и стали. Этот эффект становится понятным, если учесть, что перечисленные металлы, имеюш ие переменную валентность, являются переносчиками электронов и ускоряют, таким образом, процесс старения полимерного адгезива. [c.312]

    Характер влияния добавок на процесс сшивания натурального каучука при облучении свидетельствует о свободнорадикальном механизме этого процесса. Наиболее активными ингибиторами процесса являются соединения, способные отдавать атом водорода и образующие при этом сравнительно неактивные свободные радикалы [147, 148, 152]. К наиболее эффективным ингибиторам относятся ароматические амицы, хиноны и разнообразные ароматические гидроксил-, азот- и серусодержа-щие соединения. Была установлена четкая корреляция между ингибирующими свойствами этих соединений и их способностью к взаимодействию со свободными радикалами [147, 148, 153]. При введении значительных количеств этих добавок удается снизить число образующихся сшивок примерно на 65%. Помимо ингибирования процесса образования поперечных связей, многие из этих добавок снижают интенсивность окислительной деструкции, имеющей место при радиационном облучении. [c.179]


Смотреть страницы где упоминается термин Каучук окислительная деструкция: [c.292]    [c.64]    [c.235]    [c.311]    [c.252]   
Органические перекиси, их получение и реакции (1964) -- [ c.472 ]

Органические перекиси, их получения и реакции (1964) -- [ c.472 ]

Химия высокомолекулярных соединений (1950) -- [ c.82 , c.107 , c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Окислительная деструкция



© 2025 chem21.info Реклама на сайте