Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мыловарение

    Органические (нефтяные) кислоты и их соли. Выпариванием воды из щелочных отходов от очистки керосиновых, соляровых и других маловязких дистиллятов нефтей и высаливанием раствором 1 аС1 получают натриевые соли нафтеновых кислот — мылонафт. Разложением серной кислотой натриевых солей нафтеновых кислот получают асидол. Как и мылонафт, асидол применяется главным образом в мыловарении в качестве заменителя жиров, а также в про- [c.144]


    В отношении использования смесей алифатических карбоновых кислот (С12—С18) для мыловарения имеются исчерпывающие указания в соответствующих специальных трудах. Здесь же будет в основном обсуждаться вопрос об утилизации побочных продуктов окисления парафинов, потому что от этого отчасти зависит экономика всего процесса. [c.469]

    Парафины и церезины применяются для изготовления свечей, для пропитки соломки спичек, в производстве восковой бумаги, в качестве диэлектрика в электротехнической и радиотехнической промышленности. При окислении хорошо очищенного парафина воздухом в присутствии катализаторов образуются карбоновые кислоты, применяемые в мыловарении как заменители жиров. Крекингом парафина получают а-олефины — сырье для производства моющих веществ и др. [c.24]

    Хлорид натрия Na l, или поваренная соль, служит сырьем для получения хлора, соляной кислоты, едкого натра и карбоната натрия (соды), применяется в красильном деле, в мыловарении и во многих других производствах. Он служит также приправой к пище и применяется в качестве средства, предохраняющего пищевые продукты от порчи. [c.364]

    Жирные кислоты для мыловарения могут с успехом заменить высшие насыщенные жирные кислоты животного и растительного происхождения. Неизбежное образование головного погона жирных кислот первоначально резко ухудшало экономику процесса окисления парафина, так как они не находили никакого применения. Однако в настоящее время на них имеется большой спрос, так как каталитическим гидрированием их можно превратить в первичные спирты, являющиеся важным полупродуктом для производства пластификаторов. [c.10]

    Низшие кислоты находят себе различное применение. Муравьиную кислоту, например, используют при силосовании зеленых кормов. Уксусную и масляную кислоты применяют для этерификации целлюлозы. Пропионовая кислота в виде кальциевой соли является отличным средством для консервирования хлеба. Кислоты s— g предпочитают каталитически восстанавливать в спирты, адипаты и фталаты которых служат превосходными пластификаторами поливинилхлорида. Кар боновые кислоты С —Сд можно с успехом применять в виде натровых солей в пенных огнетушителях кислоты Сд—Сц можно использовать для флотационных целей. Кислоты С12— ie поставляют мыловаренной промышленности. Для получения синтетического пищевого жира используют кислоты Сд—С в, предварительно освобожденные от всех дикарбоновых кислот. Высокомолекулярные кислоты is—Сг1 могут быть применены для производства смазочных масел и мягчителей для кожевенной промышленности (в комбинации с триэтанолами- ном). Кубовые остатки от перегонки превращают после кетонизации и восстановления в смеси углеводородов типа вазелина. Эти немногие примеры ири желании можно умножить, так как патентная литература по этому вопросу чрезвычайно обширна. [c.470]


    Исследуя кислоты, полученные при окислении парафиновых углеводородов изостроения, можно составить представление о пунктах окислительной атаки кислорода. Последний действует преимущественно на точку разветвления, иначе говоря, на третичный атом водорода, В результате отщепления боковых цепей образуются в основном кислоты с прямой цепью. Тем не менее парафины с сильно разветвленным угле- родным скелетом продолжают оставаться непонгодными для промышленных целей сырьем [42], При их окислении получают главным обраэом низкомолекулярные и более глубоко окисленные карбоновые кислоты с числом атомов углерода меньше 12, не говоря уже о значительных количествах кислот с разветвленным скелетом. Эти кислоты обладают неприятным запахом и неудовлетворительным моющим действием. Технические нефтяные дистилляты, хотя и обогащенные парафинами, непригодны для получения жирных кислот, предназначенных для мыловарения, так как содержат нафтеновые и ароматические углеводороды, а также другие циклические соединения. [c.445]

    Кроме того, продукты омыления содержат еще нейтральные масла, снижающие еще больше моющую способность. Мыловаренная промышленность располагает крайне малым количеством натуральных жиров, что создает чрезвычайно напряженное положение в области моющих средств. Этот дефицит в моющих средствах легко может быть ликвидирован синтетическими заменителями, которые легко можно получать из когазина II простым путем и в больших количествах с учетом некоторых их недостатков. [c.417]

    Дальнейшие способы предварительной очистки оксидата-сырца, которые на практике не применяют, заключаются в его обработке отбеливающими землями или окислителями (азотная кислота, перекись водорода). Очень удовлетворительной очистки достигают каталитическим гидрированием водородом при 300° и 200 ат в присутствии никеля. При этом, правда, теряют известную часть кислот для мыловарения (С,г- - ie), но зато оставшиеся кислоты после обычной переработки получаются в очень чистом виде при перегонке кислоты-сырца кубового остатка получается заметно меньше. [c.456]

    Полученное таким способом мыло-сырец еще непригодно к употреблению, поскольку оно состоит из натровых солей жирных кислот (С4— 22). При помощи разбавленной минеральной кислоты, например серной, его разлагают в освинцованных железных аппаратах, в керамических или в футерованных емкостях в соответствующие карбоновые кислоты, которые затем следует перегонять, чтобы выделить кислоты (С[2—С18), годные для мыловарения. [c.460]

    Не говоря уже о том, что головные погоны жирных кислот следует из-за ИХ плохого запаха удалять из кислот, идущих в мыловаренную промышленность, их натровые соли не обладают к тому же моющим действием. [c.471]

    Головные погоны , наличие которых вначале ставило под сомнение экономичность процесса окисления парафина, нашли себе вскоре настолько важные области применения, что в настоящее время промышленное значение этих кислот по меньшей мере не уступает значению кислот, применяемых для мыловарения. [c.471]

    X. ОКИСЛЕНИЕ ВЫСОКОМОЛЕКУЛЯРНЫХ ПАРАФИНОВ С ЦЕЛЬЮ ПОЛУЧЕНИЯ ПРОДУКТОВ, ПРЕДНАЗНАЧЕННЫХ НЕ ДЛЯ МЫЛОВАРЕННОЙ [c.475]

    В Советском Союзе одной из важнейших задач, стоящих перед химической промышленностью, является возможно более полная замена натуральных жиров, используемых для технических нужд, синтетическими жирозаменителями. В настоящее время значительные количества растительных и животных жиров расходуются в мыловарении, в производстве олиф, смазочных масел, в резиноасбестовой и других отраслях промышленности. За последние пять лет, несмотря на существенное увеличение объема производства различных жирозаменителей, потребление растительного масла для технических.целей увеличилось как в абсолютном, так и в относительном масштабе. Если в 1955 г. расход растительного масла на производство промышленной продукции составил 420 тыс. т, или 27,3% от общей выработки растительного масла в стране, то в 1961 г. это количество увеличилось до 610 тыс. т и составило уже 35,2% [69]. [c.138]

    На основании экспериментальных работ, проведенных советскими и зарубежными исследователями, была выявлена принципиальная возможность применения для целей окисления в СЖК парафинов с иным фракционным составом [70, 71]. Однако изменение фракционного состава парафинов по сравнению с составом, предусмотренным техническими условиями на окисляемый парафин, обычно приводит к снижению выхода наиболее ценных мыловаренных фракций кислот Сю—Сго за счет повышения выхода пизкомолекулярных или кубовых (высокомолекулярных) кислот. Это, в свою очередь, оказывает существенное влияние на экономику всего процесса производства СЖК. Более подробно этот вопрос будет рассмотрен ниже. Следует подчеркнуть, что потребность в парафинах необходимо рассматривать с учетом их фракционного состава. [c.140]

    Несколько лет тому назад потребность в синтетических жирных кислотах почти полностью определялась масштабами их использования в мыловаренной промышленности. Но на основании работ, проведенных в научно-исследовательских институтах и на промышленных предприятиях, была выявлена возможность широкого использования синтетических жирных кислот для синтеза целого ряда важных химических продуктов. К числу новых направлений использования синтетических жирных кислот в первую очередь следует отнести производство высших жирных спиртов, флотореагентов, пластификаторов, синтетических смазочных масел и других продуктов. [c.148]


    Мыловаренная промышленность Высшие жирные спирты. ... Консистентные смазки и масла [c.149]

    Если до 1958 г. выработка синтетических жирных кислот осуществлялась на единственной установке в Шебекино, то в последующие три года количество их увеличилось до пяти, а объем производства возрос в 4,4 раза. В 1961 г. было выработано 97,5 тыс. т синтетических жирных кислот, в том числе кислот мыловаренных фракций Сю — Сго — 58,3 тыс. т. Данные по росту объема производства синтетических жирных кислот приведены на рис. 26. [c.149]

    Непосредственное сопоставление технико-экономических показателей производства синтетических жирных кислот затруднительно, так как на действующих заводах используются различные методы калькулирования себестоимости кислот. На Шебекинском комбинате определяется средняя себестоимость суммарных кислот, т. е. затраты на производство делятся на общий выпуск кислот всех фракций. Существенный недостаток данного метода распределения затрат заключается в том, что различные по своему качеству и потребительской ценности кислоты оцениваются по равной стоимости. Так, па Шебекинском комбинате с трудом реализуется не более 50% кубовых кислот, а себестоимость их по принятой методике распределения затрат равна себестоимости дефицитных мыловаренных кислот Сю— ao- [c.151]

    Объектом многочисленных исследований было получение жирных кислот из нефтяного сырья (особенно парафина) для мыловарения или производства синтетических жиров [314—318]. Производство синтетических жирных кислот вызывает особый интерес в условиях нехватки натуральных жиров (например, в военное время). При невысоких температурах и атмосферном давлении реакция окисления парафина воздухом протекает очень медленно. В реакционной смеси окисления парафина (температура плавления -Ь55° С) при 110° С даже через 280 часов после начала процесса было обнаружено очень мало продуктов окисления [319, 320]. [c.586]

    Расходные показатели и себестоимость 1 т мыловаренных кислот на различных заводах [c.152]

    Неодинаковый подход к распределению затрат приводит к резким колебаниям в величине себестоимости 1 т мыловаренных кислот, которая изменяется от 430 до 800 руб. за тонну. [c.152]

    Данные табл. 43 подтверждают, что резкие колебания в себестоимости мыловаренных фракций синтетических жирных кислот вызваны, в основном, различиями в методах распределения затрат между отдельными фракциями СЖК. Фактические затраты па 1 m суммарных кислот, полученных на различных заводах, изменяются в довольно узких пределах при этом максимальный разрыв не превышает 15—20%. [c.153]

    Согласно проекту, выход кислот С5—С о в расчете на израсходованный парафин составляет 58,5%, в том числе кислот мыловаренных фракций Сю— ao —40%. Кубовые остатки содержащие незначительное количество кислот С21 и выше, рассматриваются как котельное топливо. [c.159]

    Гндро.ксид натрия — один из важнейших продуктов основной химической промышленности. В больших количествах сш потребляется для очистки продуктов переработки нефти гидроксид натрия широко применяется в мыловаренной, бумажной, текстильной и других отраслях промышленности, а также при производстве искусственного волокна. [c.567]

    Источником триметиленгликоля для этой реакции служила мыловаренная промышленность, где он образуется в небольших количествах как побочный продукт производства глицерина. В настоящее время в качестве исходного продукта для производства циклопропана применяют 1,3-дихлорпропан (триметиленхлорид), получаемый прямым хлорированием пропана (см. стр. 176). [c.215]

    Производство синтетических жирных кислот окислением парафинов. Намечается переработка парафинистых нефтей Мангышлакского месторождения, при этом будет получено большое количество низкоплавких парафинов, окислением которых намечено получать синтетические кислоты для мыловарения. Окисление парафинов, как известно, ведется кислородом воздуха в присутствии катализатора—перманганата калия. Внедрение этого процесса позволит высвободить значительное количество пищевых жиров, расходуемых на мыловарение. Кроме указанных кислот, здесь будут получаться также низкомолекулярные жирные кислоты, находящие применение в парфюмерной промышленности, а также в производстве высококачественных пластификаторов. [c.374]

    Так как при окислении парафина кислород распределяется по всем метиленовым группам примерно равномерно, нри окислении получаются кислоты разного молекулярного веса, из которых нерегопкой отделяют кислоты, пригодные для мыловарения. Окисление проводят при возможно низких температурах порядка 105—120° [69]. Образующиеся жирные кислоты, особенно высокомолекулярные, окисляются далее, при этом образуются оксикислоты, кетокислоты и двухосновные жирные кислоты, не растворимые в бензине. Чтобы свести к минимуму образование этих нежелательных побочных продуктов, окисление ограничивают 30—50%-ным превращением всей окисляемой углеводородной смеси. В качестве катализатора применяют в большинстве случаев перманганат калия в количестве 0,3% вес. от всего парафина. Перманганат калия вводят нри перемешивании в нагретый до 150° парафин в виде концентрированного водного раствора, вода испаряется, а перманганат восстанавливается органическим веществом до двуокиси марганца, которая распределяется в реакционной смеси в исключительно тонко распыленном состоянии. Окисление ведут без применения давления. Важно, чтобы применяемый для окисления воздух поступал в парафин в возможно тонко распыленном состоянии. [c.162]

    Содержащи " хлористый натрий водный раствор глицерина перерабатывают методом, припят лм в мыловаренной промышленности. В испарителе удаляется болыпагг часть воды. Выделившиеся гристаллы хлористого натрия отделя от фильтрованием, а сырой глицерин подвергают перегонке. Для удаления хлорсодержащих соединопий дистиллят экстрагируют ксилолом, а затем подвергают ректифи гации в вакууме. [c.175]

    Из этих обоих примеров видно, как важно особенно для получения высокомолекулярных корбоновых кислот (жирных кислот для мыловарения) иметь возможность направлять нитрогруипу при прямом нитровании параф1иновых углеводородов на конец цепи молекулы. Тогда, исходя из когазина II, можно было бы осуществить прямое получение карбоновых кислот с 12—18 углеродными атомами без расщепления углеродного скелета [190]. [c.338]

    Производимые во время второй мировой войны фирмой И. Г. Фарбениндустри мерзолы главным образом в виде мыльного порошка (появились в продаже, минуя мыловаренную промышленность) представляли собой смеси сульфохлоридов или продукты их омыления, не имеющие высоких моющих качеств. Сульфохлориды содержали до 40% дисульфохлоридов и еще небольшое количество три- и полисульфохлоридов, которые как продукты омыления моющей способностью практически не обладают. [c.417]

    Парафиновый гач, полученный в синтезе по Фишеру—Тропшу— Рурхеми под нормальным давлением, можно непосредственно использовать для окисления, так как содержание примесей, кипящих выше 460°, настолько незначительно, что они не влияют на выходы кислот, пригодных для мыловарения, и на процесс окисления. Из приведенных ниже данных можно получить приблизительное представление о составе синтетического парафинового гача, пригодного для окисления [45] (в % объемн.)  [c.446]

    В США фирма Алокс корпорейшн с 1926 г, окисляет на заводе в Ниагара Фоллз высокопарафинистые фракции нефти, начиная от бензина и кончая парафином, в количестве 10 000 т/год. Кислоты, выделенные из оксидата, применяют не для мыловарения, а исключительно для производства пропиток для тканей (в форме солей металлов), мягчителей, разрушителей пены (в форме солей аминов), флото-реагентов, поверхностно-активных веществ, антикоррозийных средств и [c.475]

    В нюне 1932 г. был сдан в эксплуатацию Гомель-скпй маргариновый завод и выпущено 9,025 т маргарнна, а 15 июля этого же года завод выпустил 720 т маргарина. В 1935 г. был сдан в эксплуатацию мыловаренный завод мощностью 30 тыс. т в год. Определить производительность маргаринового (П]) и мыловаренного (Пг) заводов. [c.62]

    Описанный ниже метод был применен несколькими концернами и использовался главным образом для нолучения кислот в интервале Сю— ao, применявшихся в мыловарении. После второй мировой войны он был тщательно изучен различными исследователями, опубликовавшими ряд докладов [7] . По этому вопросу читателю рекомендуется обратиться к монографии Виттка [23], в которой приведено много фактических данных, а такн е рассмотрены несколько сотен относящихся к этой области патентов из различных стран. Очень ценной является также статья Пар-дуна и Кучинка [15], в которой приводятся данные по распределению продуктов окисления над различными катализаторами, содержащими тяжелые металлы. [c.279]

    Очистка сточных вод от поверхностно-активных веществ. Одной из основных причин нарушения экологического равновесия в естественных водоемах является их загрязнение трудноразлагаемыми поверхностноактивными веществами (ПАВ). Например, при полимеризации каучука в качестве эффективного эмульгатора применяется натриевая соль бу-тилнафталинсульфокислоты (некаль БХ) — полностью бионеразлагае-мое ПАВ нейтрализованный контакт Петрова, применяющийся в мыловаренной промышленности,— также бионеразлагаемое ПАВ оксиэти-лированные алкилфенолы являются весьма активными неиоиогенными [c.319]

    На остальных заводах калькулируются только мыловаренные кислоты фракции Сщ—Сго а затраты на получение других фракций кислот отключаются из общей суммы затрат по условным ценам. Оценка немыловаренных фракций кислот на различных заводах резко отличается друг от друга на Волгодонском комбинате СЖЗ кислоты Сд—С9 и С20 и выше оцениваются по действующим отпускным ценам, на Новокуйбышевском НПЗ — по стоимости сырья процесса, т. е. парафинов, на Черниковском НПЗ — по себестоимости котельного топлива и на Бердянском НПЗ — по издержкам па сырье и реагенты, приходящиеся на долю немыловаренных кислот. [c.152]

    Наиболее благоприятный состав товарных кислот имеет место на Шебекинском комбинате СЖК и ЖС, где по сравнению с другими заводами на каждую тонну суммарных кислот получают максимальное количество синтетических жирных кислот мыловаренных фракций Сю—С20 и минимальное количество кубовых кислот jo и выше. Например, разница в суммах от реализации 1 суммарных кислот, полученных на Шебекинском комбинате и Новокуйбышевском НПЗ, составляет 34,6 руб. Следовательно, только за счет более благоприятного состава товарных кислот Шебе-кинский комбинат по сравнению с Новокуйбышевским НПЗ имеет дополнительную прибыль в размере 34,6 руб. на каждую тонну вырабатываемых кислот. [c.153]

    Шебекинском комбинате кубовый остаток направляется в термическую печь цеха СЖК для извлечения и облагораживания кислот. На каждую тонну высших спиртов получается свыше 200 кг смеси жирных кислот, из которых более половины представлено кислотами мыловаренной фракции. По качественной характеристике кислоты, выделенные из кубового остатка, значительно уступают кислотам, полученным по обычным схемам окисления парафинов до синтетических жирных кислот. Согласно опубликованным данным, кислоты кубового остатка после термической обработки и отгонки неомыляемых имели следующие показатели кислотное число 213, эфирное число 4,5, йодное число 39,3, карбонильное число 43,5 и содержали 9,6% неомыляемых [86]. Таким образом, раздельная переработка кубового остатка не обеспечивает производство синтетических кислот, соответствующих действующим техническим условиям. Кубовый остаток может быть переработан только совместно с омыленным продуктом цеха СЖК, хотя и в этом случае качество товарных кислот, естественно, несколько понизится. [c.165]


Смотреть страницы где упоминается термин Мыловарение: [c.166]    [c.9]    [c.10]    [c.446]    [c.446]    [c.454]    [c.461]    [c.620]    [c.490]    [c.140]    [c.98]    [c.99]   
Курс органической химии (1965) -- [ c.259 ]

Курс органической химии (1967) -- [ c.259 ]

Очерк общей истории химии (1969) -- [ c.162 , c.172 , c.280 ]

Химическая литература Библиографический справочник (1953) -- [ c.426 ]




ПОИСК





Смотрите так же термины и статьи:

Браун Мыловарение

Вспомогательные материалы мыловаренного производства

Выходы жидкой углекислоты при мыловарении

География мыловарения

Глицерин при мыловарении

Единая схема контроля рафинационного гидрогенизационного, мыловаренного, глицеринового

Единая схема контроля рафинационного гидрогенизационного, мыловаренного, глицеринового производств

Использование фракции кислот С1п—С20 в мыловарении

Касаткин Подготовка сырья для мыловарения

Кустарное мыловарение

Мартин Мыловарение

Мыловаренная промышленность

Мыловаренные отходы

Новый этап в развитии мыловарения и стеаринов о-с вечное производство. (Начало промышленного переворота в области переработки жиров)

Нормы качества мыловаренной продукции

Оборудование мыловаренного производства

Основные материалы мыловаренного производства

Основные процессы мыловарения

Петров , Рабинович Методы мыловарения в производстве глицерина

Порошок для мыловарения

Практика мыловарения

Ралль Мыловаренное производство

Расщепление жиров. Появление контактного метода. Вклад Ферментный способ расщепления жиров. Расщепление жиров для нужд текстильной промышленности. Производство глицерина. Стеариново-олеиновое и свечное производство. Мыловарение Основные сорта хозяйственного мыла и конкуренция на рынке до войны

Стахановские методы работы мыловаренном производств

Стеариновое производство и мыловарение

Сырье и материалы мыловаренного производства

Сырье мыловаренного производства Жиры и их заменители

Сырье мыловаренной промышленности

Твердые хозяйственные мыла. Жидкое хозяйственное мыло. Мыла туалетного назначения и ир. Заменители мыла. Примечания к главе XXI Техника мыловарения

Технология и химизм процесса получения углекислого газа при мыловарении

Углекислота мыловаренного производства

Физико-химические основы мыловарения

Число и подразделение мыловаренных предприятий



© 2025 chem21.info Реклама на сайте