Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перекиси образование Ьри деструкции

    Еще в 1915 г. И. И. Остромысленский показал, что действие перекиси бензоила на натуральный каучук в отсутствие кислорода приводит не к деструкции, а к структурированию каучука. Причина этого явления заключается, очевидно, в том, что перекись, генерируя радикалы, вызывает образование полимеризационных цепей или отдельные акты структурирования, не сопровождаемые разрывом молекул. Процесс может рассматриваться как особого рода вулканизация. Введение в систему кислорода способствует деструкции материала. Поэтому в зависимости от условий опыта продукт получается с разной степенью структурирования или деструкции. [c.111]


    Быстрая деструкция производных целлюлозы, происходящая под действием ультрафиолетовых лучей, объясняется главным образом окислением, так как сами ультрафиолетовые лучи в отсутствие кислорода оказывают лишь относительно слабое действие. Под действием дальнего ультрафиолета происходит образование карбоксильных групп (с последующим декарбокси-лированием) и альдегидных и кетонных групп, распадающихся с образованием СО, СО2 и Н2<0, а также понижение степени полимеризации. В ближнем ультрафиолете разложение происходит лишь при условии фотосенсибилизации различным / красителями, пигментами, наполнителями и т. д. В присутствии влаги эти сенсибилизаторы могут образовывать перекись водорода, каталитически ускоряющую окисление. Другие вещества (антрахиноновые и азокрасители) вызывают противоположный эффект. [c.134]

    Выдерживая предварительно облученные волокна из полипропилена в газообразном винилхлориде или винилиденхлориде при 20°С, прививают поливинилхлорид или поливинилиденхлорид. Степень прививки линейно возрастает с дозой облучения полипропилена, длительностью пребывания волокон в мономере и давлением паров мономера. Волокна становятся более прочными и более огнестойкими. Равномерного распределения боковых ответвлений можно достигнуть, проводя реакцию прививки в расплаве. В этом случае процесс инициируют предварительным окислением полиолефина с целью образования в нем гидроперекисных групп или вводя органическую перекись в прививаемый мономер. Чем выше концентрация полипропилена в реакционной смеси в начальной стадии полимеризации, тем выше эффективность прививки. Введенные таким методом боковые ответвления полистирола или полиметилметакрилата предохраняют полипропилен от окислительной деструкции. Ответвления поливинилпирролидона или полиакриловой кислоты придают полиолефину гидрофиль-ность и лучшую окрашиваемость, повышают адгезию к металлу, но в то же время полимер становится более жестким и газопроницаемым. [c.271]

    Степень фотохимической деструкции, однако, подчиняется более сложным зависимостям. Так, введение меди в волокно снижает степень фотохи-л 1ческой деструкции для хлопка, окрашенного наиболее чувствительными красителями, но увеличивает деструкцию неокрашенного хлопка или хлопка, обработанного кубовыми красителями темного цвета таким образом, степень деструкции фактически оказывается независящей от природы взятого красителя. Железо и другие металлы также влияют на фотохимическую деструкцию. Возможное объяснение заключается в том, что различные тяжелые металлы способствуют пе только разложению перекиси водорода, но и образованию ее в результате самоокисления в атмосфере (см. стр. 68), а поэтому в некоторых случаях размер деструкции значительно больше зависит от природы и количества присутствующих тяжелых металлов, чем от природы красителя. В этом отношении интересно было бы изучить влияние металлов, обладающих сравнительно ничтожными каталитическими свойствами, а также неметаллических катализаторов на фотохимическую деструкцию хлопка. Шеффер [45] обнаружил перекись водорода также при щелочной обработке одной целлюлозы и привел доказательства, подтверждающие, что щелочная деструкция целлюлозы происходит в результате гидролиза глюко-пирлР1озных колец целлюлозы с последующим окислением перекисью. [c.490]


    Гравиметрически изучена деполимеризация полиэгиленокси-да с мол. весом 15 400—20000 при 20°С в растворе дихлорэтана в присутствии триэтилоксоний-фторбората Обнаружено, что продуктом деструкции является диоксан. Предложен механизм деструкции, включающий в качестве первичного акта образование иона оксония. Различные перекиси (Н2О2, гидроперекиси ацетила, кумола, перекись бензоила, ацетила, грег-бутила, этила) в среде жидкого насыщенного углеводорода, не растворяю щего полимер, вызывают деструкцию полиалкиленоксидов [c.165]

    Перекиси (в частности, перекись бензоила), 2,2-азобисизобути-ронитрил и геминальные хлор- и бромнитрозосоединения при фотовозбуждении распадаются с образованием соответственно алкоксильных, алкильных и галоген-радикалов. В результате происходит свободнорадикальное инициирование деструкции полимеров за счет отрыва возникшими радикалами водородного атома от макромолекул. Так, в частности, сенсибилизируется фотодеструкция цис-1,4-полиизопрена. Многие ароматические конденсированные углеводороды (нафталин, антрацен и т. п.) являются сенсибилизаторами деструкции полимеров вследствие образования синглетного кислорода. Так, нафталин ускоряет фотоокисление полиметилметакрилата, а антрацен — полистирола и 1,4-полибутадиена. Эти же сенсибилизаторы могут действовать и по механизму переноса энергии от их высших возбужденных состояний к полимеру эффективная фотодеструкция полиэтилена в присутствии фенаитрена, например, объясняется Т—Г-поглощением последнего (время жизни -состояний около 3 с) и переносом избыточной [c.183]

    Высыхание масел представляет собой весьма сложный и еще недостаточно изученный процесс на воздухе при комнатной температуре он длится у высыхающих масел несколько суток. Установлено, что в первой стадии происходит присоединение кислорода воздуха к радикалам ненасыщенных кислот с образованием перекисных и гидроперекисных соединений. В дальнейшем образовавшиеся перекиси исчезают вследствие аутоокислительной полимеризации, приводящей к образованию полимера пространственного строения этот процесс сопровождается повышением вязкости масла. Пленка постепенно становится неплавкой и нерастворимой. Одновременно с образованием пленки из нее выделяются летучие продукты окислительной деструкции—двуокись углерода, вода, уксусная и муравьиная кислоты, перекись водорода. [c.140]

    В углеводородных растворах при 20° все эти соединения поглощают кислород с образованием перекиси водорода. Выход перекиси водорода при окислении фенилгидразина в этилбензольном растворе составлял 41% от теорет., при окислении гидразобензола — 22%, а при окислении диэтилового эфира диоксималеиновой кислоты — только 3% от теорет. Малый выход перекиси водорода, особенно при окислении эфира диокси-малеиповой кислоты, обусловлен, очевидно, разложением образующейся перекиси водорода при взаимодействии с восстановителем. Последняя реакция протекает, как нами установлено, с весьма высокой скоростью (рис. 1). Введение нафтената железа приводит к резкому уменьшению выхода перекиси водорода, вследствие ее разложения. Рис. 2 показывает эффективность действия указанных систем в процессе окислительной деструкции каучуков. Эффективность действия систем, естественно, сильно увеличивается при введении даже небольших количеств солей железа, растворимых в углеводородах (рис. 2, кривая 2), что обусловлено ускорением распада перекиси. Как следует из данных, приведенных на рис. 3, в углеводородных растворах в отсутствие солей железа перекись водорода устойчива при 50° (кривая J). Введение даже незначительных количеств солей железа приводит к быстрому разложению перекиси (кривая 2). Радикальный характер распада НаОа под влиянием солей келеза в водных средах доказан Габером [10]. [c.119]

    Графмюллер и Хьюзмен [94] исследовали реакцию окисления полиэтилена в виде порошка или в растворе при 120° в темноте. Окисление в растворе сопровождается деструкцией полимерных цепей, что приводит к снижению вязкости и молекулярного веса полимера, определяемого осмометрическим методом. Характеристическая вязкость полиэтилена, окисленного в растворе ксилола, при содержании в нем кислорода 0,96% понижается с 2,4 до 0,6 (определено в декалине при 120°). Вязкость полиэтилена, окисленного в растворе о-дихлорбензола, снижается до 0,3 при содержании кислорода 1,87 % (окисление в течение 161 час). Порошкообразный полимер окисляется быстрее за 100 час содержание кислорода достигает 5,1%. Растворы полиэтилена, окисленного до указанного содержания кислорода, образуют гели. Окисление полиэтилена сопровождается выделением небольшого количества летучих продуктов. Гидроксильные группы образуют 10% связанного кислорода, а карбонильные группы — 20%. Остальная часть кислорода расходуется на образование эфирных поперечных связей. После гидролиза или восстановления действием алюмогидрида лития сшитый полимер растворяется в соответствуюш их растворителях. В ИК-спектре восстановленного полимера отсутствуют полосы поглош ения, характерные для групп С = О и GO . Восстановленный полимер содержит 1% гидроксильных групп. Количество этих групп определяют по содержанию хлора после взаимодействия восстановленного полимера с хлорфенилизоцианатом. Эфирные связи, образуюш иеся в небольшом количестве при окислении полиэтилена в растворе, очевидно, являются внутримолекулярными связями, поскольку при восстановлении окисленного полимера вязкость его раствора мало изменяется. Если порошок полиэтилена предварительно обработать метилатом натрия, то при последующем окислении полимер лишь деструктируется, но не сшивается. Сшиванию способствует присутствие органических и неорганических кислот. При окислении полиэтилена в растворе о-дихлорбензола добавление уксусного ангидрида ускоряет деструкцию. Аналогично действует перекись бензоила добавление азо-бмс-изобутиронитрила не влияет на вязкость полимера. При окислении полиэтилена в растворе ге-ксилола перекись бензоила не ускоряет деструкцию, что, по-видимому, объясняется взаимодействием образующихся бензоат-радикалов с и-ксилолом. В отсутствие ге-ксилола бензоат-радикалы настолько быстро реагируют с полимером при 120°, что наличие кислорода не устраняет сшивания. [c.241]



Смотреть страницы где упоминается термин Перекиси образование Ьри деструкции: [c.126]    [c.490]    [c.123]    [c.135]    [c.313]   
Высокомолекулярные соединения (1981) -- [ c.620 , c.627 ]




ПОИСК







© 2025 chem21.info Реклама на сайте