Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тарелки образующей тарелок

    При расчете ректификационных колонн наиболее простой, однако недостаточно обоснованный подход состоит в использовании понятия эффективности т](.р самого колонного аппарата, определяемой как отношение числа теоретических ступеней, требующихся для данного разделения, к числу действительных ступеней, осуществляющих такое разделение. Эффективность т](.р, представляющая таким образом некий средний к. п. д. реальной тарелки, может быть получена на основе обобщения опытных данных, полученных при обследовании действующих колонн, и сравнения этих данных с числом теоретических ступеней, полученным по расчету. При этом подходе на величине среднего к. п. д. тарелки сказываются не только неточности опытного обследования, но и допущения, принимаемые в том или ином методе расчета числа теоретических тарелок. [c.208]


    На рис. Х1-30 представлена схема роторного центробежного абсорбера с вертикальным вращающимся валом. В этом аппарате вращающиеся тарелки 1, укрепленные на валу, чередуются с неподвижными тарелками 2, которые крепятся к корпусу колонны. Тарелки 1 снабжены кольцевыми вертикальными ребрами 3, а тарелки 2 — коаксиальными ребрами. При таком устройстве между вращающимися и неподвижными тарелками образуются кольцевые каналы. Жидкость поступает в центральную часть колонны и под действием центробежной силы разбрызгивается кромкой вращающегося ребра. Капли пролетают пространство, заполненное газом, и ударяются о стенку соответствующего ребра неподвижной тарелки. Таким образом при движении жидкости от центра к периферии тарелки происходит многократное контактирование фаз. [c.483]

    При скорости газа до 1,5 м/с тарелки работают аналогично ситчатой и колпачковой жидкость из переливного кармана а поступает на рабочую часть тарелки, газ вводится через просечки, барботирует через слой жидкости, аэрирует ее и на тарелке образуется газожидкостный слой. При скорости газа более 1,5 м/с газовые струи, выходящие из просечек, и создаваемые ими потоки жидкости движутся к вертикальным перегородкам или стенкам колонны, ударяются о них, сепарируются и газ покидает тарелку. При этом жидкость совершает сложное зигзагообразное движение от переливного а к сливному б карману. [c.86]

    Пусть рассматривается полная ректификационная колонна, оборудованная парциальным конденсатором и парциальным кипятильником в укрепляющей секции колонны расположено г теоретических тарелок, а в отгонной — 5 и, кроме них, еще тарелка ввода питания. Последнюю можно рассматривать как устройство, совмещающее функции смесителя и тарелки. Таким образом, колонна в целом состоит из пяти отдельных частей укрепляющей и отгонной секций, тарелки питания, конденсатора и кипятильника (см. рис. П1.3). Ступени разделения в укрепляющей секции нумеруются сверху вниз, от О для парциального конденсатора до г для ее самой нижней тарелки, а в отгонной секции — снизу вверх, от О для парциального кипятильника до х + 1 ДЛя ее самой верхней тарелки, являющейся тарелкой питания. [c.346]

    На рис. 106 приведена схема тарелки с З-образными колпачками 2. Их штампуют из листовой стали с прорезями по одной из продольных кромок. При сборке образуется ряд продольно расположенных и чередующихся желобов и колпачков. На тарелке поддерживается определенный слой флегмы, а ее избыток перетекает вниз через сливные стаканы. Прорези колпачков погружены в слой жидкости на тарелках, образуя гидравлический затвор. Пары, двигаясь снизу [c.216]


    С целью упрощения расчетов обычно используют три допущения первое — термодинамическое равновесие между паром и жидкостью на тарелке, т. е. так называемая концепция о теоретической тарелке второе — постоянство потоков жидкости и паров по высоте отдельных секций колонны третье — постоянство относительных летучестей компонентов в условиях разделения. Даже при указанных упрощающих допущениях система уравнений, описывающая взаимосвязь различных параметров ректификационной колонны, характеризуется высокой степенью нелинейности, в связи с чем задача решается методом последовательных приближений. Ниже описан один из вариантов расчета простой колонны методом от тарелки к тарелке при заданных потоках и числе теоретических таре.лок в укрепляющей и отгонной секциях. Таким образом, задача заключается в определении составов дистиллята и остатка. Направление расчета тарелок принято от концов колонны к тарелке питания. [c.56]

    Перелив флегмы с тарелки на тарелку происходит через обычные сливные устройства, как и для колпачковых и желобчатых тарелок. Работа тарелки протекает следующим образом (рис. 14). Избыток жидкости, поступающей из сливного стакана с вышележащей тарелки, заполняет карман тарелки и из него распределяется по всему ее полотну. Пары, поступающие снизу, барбо-тируют через жидкость, образуя вспененный слой при этом заданному расходу смеси паров соответствует определенная степень открытия прорезей клапанов. Высота подъема клапанов зависит от расхода смеси паров. При неполном открытии клапанов их положение неустойчиво — по всей плоскости тарелки клапаны как бы дышат , совершая вертикальные колебания. [c.43]

    При малых скоростях газа (пара) жидкость полностью проваливается через отверстия. С повышением скорости газа на тарелке образуется слой жидкости, через который барботирует газ (пар). [c.63]

    Идя таким образом от тарелки к тарелке, можно аналитически подсчитать необходимое число нх для получения азота любой чистоты. Однако вследствие длительности вычислений этот метод подсчета отнимает много времени, поэтому применим здесь графический метод подсчета числа тарелок. [c.356]

    Сырье — гудрон или крекинг-остаток (или их смесь) — подается насосом 1 двумя параллельными потоками в трубы подовых и потолочных экранов печей 2 и 5, где оно нагревается до 350—380 °С. Затем сырье поступает в нижнюю часть колонны 9 на верхнюю каскадную тарелКу. Сюда же под нижнюю тарелку поступают горячие газы и пары продуктов коксования, образующиеся в двух параллельно работающих камерах 5 (или 5 ). В колонне сырье встречается с восходящим потоком газов и паров и в результате контакта тяжелые фракции паров конденсируются и смешиваются с сырьем. Таким образом, в нижней части колонны образуется смесь сырья с рециркулятом, обычно называемая вторичным сырьем. Если в сырье содержались легкие фракции, то они в результате контакта с высокотемпературными парами испаряются и уходят в верхнюю часть колонны 9. [c.29]

    Вероятно, наиболее важной из полунезависимых переменных при работе колонны является положение (номер) тарелки питания. Если состав питания колеблется не очень значительно, достаточно одного положения тарелки питания. Однако при возможных широких колебаниях состава питания может произойти нарушение режима и соответствующее понижение разделяющей способности колонны за те пределы, в которых она может быть скорректирована системой регулирования. Тогда положение тарелки питания желательно каким-либо образом автоматически изменить. [c.88]

    В работе [153] обнаружено значительно большее влияние частоты и амплитуды пульсации на коэффициент обратного перемешивания [уравнение (2) табл. 7], чем в работе [152]. При этом Еоб в случае встречного движения двух фаз меньше, чем при однофазном потоке. По мнению авторов [153], капли дисперсной фазы, коалесцируя под (или над) тарелкой, образуют слои, препятствующие обратному перемешиванию сплошной фазы. При увеличении скорости последней значение Еоб уменьшается, а при однофазном потоке обратный переток жидкости из секции в секцию осуществляется легче, и Еоб возрастает. Во время опытов не было обнаружено влияния соотношения фаз на величину Еоб. [c.174]

    Принцип действия термодинамического конденсатоотводчика основан на использовании кинетической энергии пара за счет понижения статического давления при увеличении скорости пара. При поступлении в конденсатоотводчик пара с конденсатом или чистого конденсата под действием рабочего давления тарелка отходит от седла и открывает выходное отверстие корпуса. Скорость пара в щели между тарелкой и седлом в момент поступления пара значительно выше скорости конденсата, и под тарелкой образуется пониженное давление. В результате этого тарелка прижимается к седлу. Кроме того, пар проникает в камеру над тарелкой, создавая в ней дополнительное давление, прижимающее тарелку к седлу. Таким образом, отсекается выходное отверстие. При понижении температуры в камере над тарелкой, что может произойти [c.120]


    Для сепараторов с коническими тарелками индекс производительности находят с учетом угла а наклона образующей тарелки к оси конуса и числа г тарелок в роторе [c.314]

    В начале барботажного режима при подвисании жидкости наблюдается своеобразный гистерезис . При этом образование слоя жидкости на тарелке происходит при больших скоростях газа, чем при исчезновении этого слоя ( провале ). Чтобы образовать слой жидкости, нужна большая энергия газового потока, чем та, которая необходима для удержания уже образовавшегося слоя на тарелке. Поэтому, если прн скорости газа, меньшей скорости подвисания , на тарелку подать сразу жидкость, то может образоваться слой ее. Поэтому целесообразно до скоростей подвисания в качестве распределительной тарелки устанавливать тарелку большего свободного сечения, чем рабочая. В этом случае подвисание жидкости происходит прн более высоких скоростях газа, чем при работе с одинаковыми распределительными и рабочими тарелками (см. пунктирные линии на рис. 183). [c.376]

    Расчет от тарелки к тарелке основан на использовании понятия теоретической тарелки и производится следующим образом. [c.232]

    Характер распределения газа и жидкости зависит не столько от конструкции распределяющих устройств, сколько от скорости газового потока. При небольшой скорости газа в отверстиях ситчатой тарелки отдельные пузырьки газа (пара) отрываются и перемещаются в жидкости один за другим при этом тарелка работает неполным сечением. Такой режим распределения газа называется пузырьковым. В интервале скоростей газового потока, соответствующих пузырьковому режиму, отмечаются граница скорости, при которой часть жидкости проваливается через отдельные отверстия, граница скорости, при которой провал отсутствует, но отверстия работают неравномерно, и, наконец, граница скорости, соответствующая равномерной работе тарелки во всем сечении. При этом на тарелке образуется ячеистая пена. [c.329]

    Чтобы газ не попадал в переливные трубы и не препятствовал таким образом нормальному перетоку жидкости с тарелки на тарелку, нижние концы переливных труб опущены под уровень жидкости. Благодаря этому создается гидрозатвор, предотвращающий прохождение газа через переливные трубы. [c.600]

    С увеличением производительности по жидкости уровень ее в патрубке 5 повышается, жидкость заполняет пространство в патрубке 2 и начинается истечение из верхней щели. В пространстве между тарелками образуется вторая кольцевая струя. Таким образом, многощелевой слив позволяет значительно расширить диапазон нагрузок по жидкости. [c.87]

    Конструктивно тарельчатые сепараторы (рис. 3.23) аналогичны однокамерным. Пакет тарелок 10 надет на горловину загрузочной воронки и зажат в осевом направлении между раструбом воронки и конической крышкой барабана (в осветляющих сепараторах) или разделительной тарелкой (в разделяющих сепараторах). Наружная поверхность горловины загрузочной воронки, называемой в этом случае тарелкодержателем 8, имеет цилиндрическую форму с продольными пазами переменной глубины, служащими для отвода легкого компонента. Осветляемая жидкость (суспензия) из внутренней полости тарелкодержателя 8 подается к периферийной части пакета тарелок 10 и поступает (разделившись иа параллельные потоки) в межтарельчатые зазоры. В зазорах происходит центробежное осаждение твердых частиц (более тяжелых, чем жидкость) на нижней поверхности тарелок. Осевшие частицы скользят ио поверхности тарелок к периферии, двигаясь навстречу жидкости. Для этого необходимо, чтобы угол (обычно 35—45°) между образующей тарелки и осью вращения барабана был больше угла трения частиц о тарелку. Достигнув края пакета тарелок, частицы поступают в пространство между пакетом и стенкой барабана, где накапливаются в виде осадка. Осветленная жидкость из межтарельчатых зазоров поступает по пазам тарелкодержателя в горловину крышки барабана, [c.211]

    Таким образом, попеременно используя уравнения равновесия, материального и теплового балансов, т.е. двигаясь от тарелки к тарелке, определяем составы потоков по высоте колонны. Очевидно, такие вычисления необходимо производить до тех пор, пока не будет достигнут состав паров у , поступающих на нижнюю тарелку концентрационной части колонны. [c.133]

    В такой сложной колонне процесс протекает следующим образом. Флегма, образованная при конденсации паров на верху колонны, последовательно перетекает с тарелки на тарелку в контуре, соответствующем концентрационной части колонны III. Достигнув нижней тарелки этой колонны, флегма делится на два потока. Один поток д , отводится в отпарную секцию колонны III, где получается продукт Второй поток [c.164]

    Переливаясь с тарелки на тарелку через сливные трубки, бражка образует тонкий слой жидкости и выходит из колонны в виде барды. Одновременно пар подается через барботер, расположенный внизу колонны, и кипятит жидкость на первой тарелке. Пар выделяется из кипящего слоя, жидкости на этой тарелке, проходит через отверстия в верхней тарелке и конденсируется в следующем жидком слое, испаряя за стет теплоты конденсации эквивалентное (в молярном соотношении) количество жидкости. На следующих тарелках повторяется тот же процесс. Так как спирт имеет более высокую упругость паров и испаряется с каждой тарелки быстрее воды, концентрация спирта в поднимающихся парах увеличивается от тарелки к тарелке. Хотя жидкость на каждой тарелке непрерывно отдает спирт, ее концентрация по спирту остается постоянной, так как она неире- [c.91]

    Тарелка с регулярным йращейием газо-й идкйСтйого йотока (рис. 1-7, м) имеет закручиватель для потока газа 10, выполненный из набора тангенциально расположенных пластин или листов с расположенными на них тангенциальными просечками. Тарелка имеет специальные переливные устройства 2 боковое устройство соединяется с расположенным ниже центральным устройством. Тарелка работает следующим образом. Газ, проходя через закручиватель, поступает в жидкость и придает ей круговое, вращательное движение по тарелке. Контакт пара и жидкости происходит в высокодисперсном слое газ — жидкость, где основной фазой является газ, а дисперсной — жидкость. [c.22]

    Метод деполяризации позволил определить распределение поверхности контакта по высоте газо-жидкостного слоя. Характер распределения поверхности оказался таким же, как и в пристенном слое [5], однако совпадения кривых распределения не наблюдалось. Это можно объяснить тем, что на провальных тарелках образуется неравномерный газо-жидкостный слой и структура пристенного слоя отличается от структуры пены в средних сечениях колонны. На ЭТО же указывает и сравнение методов, проведенное в колонке 40 X 60 мм. на провальной тарелке при поглощении СОг растворами NaOH. Химический метод и метод деполяризации, измеряющие интегральную поверхность контакта фаз, дали достаточно согласующиеся величины поверхности, а метод светоотраже-ния, измеряющий поверхность в пристенном слое, — резко отличающиеся результаты. [c.30]

    Водяной пар, подаваемый в низ колонн, поднимается вверх вм( сте с парами, образующимися при испарении жидкости (кубового остатка или бокового погона), вступая на вышерасположенной тарелке в контакт со стекающей жидкостью. В результате тепло— и мае сообмена в жидкости, стекающей с тарелки на тарелку, концен — трация низкокипящего компонента убывает в направлении сверху вниз. В этом же направлении убывает и температура на тарелках вследствие испарения части жидкости. Причем, чем большее коли — чесгво подается водяного пара и ниже его параметры (температура и давление), тем до более низкой температуры охладится кубовая жидкость. Таким образом, эффект ректификации и испаряющееся действие водяного пара будут снижаться на каждой последующей тарелке. Следовател1эНо, увеличивать количество отпарных тарелок и расход водяного пара целесообразно до определенных пределов. Наибольший эффект испаряющего влияния перегретого водяного пара проявляется при его расходе, равном 1,5 —2,0 % масс, на исходное сырье. Общий расход водяного пара в атмосферные колонны установок перегонки нефти составляет 1,2 —3,5, а в вакуумные колонны для перегонки мазута — 5 —8 % масс, на перегоня — ем( е сырье. [c.173]

    Диффузионная и кинетическая картина процесса многокомпонентной ректификации выяснена пока недостаточно, поэтому создание обоснованного во всех деталях, теоретически строгого метода расчета сложной колонны оказыиается весьма трудной задачей. Экспериментальные исследования рабочего процесса действующих колонн не дали пока таких существенных результатов, которые исчерпывающим образом объяснили бы все особенности развития и протекания как процесса в целом, так и отдельных его ступеней. Этим объясняется широкое использование в анализе работы ректификационных колонн термодинамического метода исследования, покоятцегося на гипотезе теоретической тарелки. [c.301]

    На рис. 19 показаны соответствующие уравнению ван Димтера графики, поражающие зависимости Н=[(и) и Н= [1/и)-, это кривые с минимумом вели-маны Н. Таким образом, имеется некоторая оптимальная скорость газа, при которой значение Я становится наименьшим, т. е. эффективность колонки наибольшей. Наиболее выгодно выбрать такой режим работы колонки (такую ско- юсть газа), при котором высота эквивалентной теоретической тарелки Я близка к минимальной и лишь слабо увеличивается с изменением скорости газа.  [c.585]

    Колонны с каскадными тарелками. Эта тарелка, разработанная Кохом в 1943 г. в США, представляет собой (рис. 108) ступенчатую систему изогнутых S-образно желобов 1 с вертикальными перегородками — рехпетками 2. По этим желобам стекает жидкость, создавая несколько каскадов. На каждом желобе стекающую жидкость подхватывает струя паров, поступающих с нижележащей тарелки, образуя пенообразную массу, которая, ударяясь о вертикальные перегородки, сепарируется и перетекает в очередной желоб, где процесс повторяется. Пройдя последний каскад, жидкость через сливной стакан 3 перетекает на нижележащую тарелку. Вертикальные решетчатые перегородки наверху загнуты, что улучшает сепарацию капелек жидкости. [c.217]

    Промывка осуществляется остатком низа колонны, который забирается щламовым насосом Н-2 и подается на верхнюю каскадную тарелку. Каскадные тарелки (7 штук) расположены в нижней части колонны. Таким образом, часть остатка колонны сливается навстречу парам продуктов крекинга и, приходя в тесный контакт с последними, улавливает катализаторную пыль. Часть циркулирующего остатка колонны, по мере накопления в нем взвеси более 20%, отводятся в транспортную линию реактора или непосредственно в реактор. [c.60]

    Флегма движется по всей части тарелки, занятой колпачка ми, перетекает на нижележащую тарелку и по ней продолжает двигаться в противоположном направлении. Пары поднимаются снизу, проходят через щели между желобами, затем через прорези в колпачках и попадают в находящийся на тарелке слой жидкости, где барботируют (пробулькивают) через нее и поднимаются выше. Поднимаясь наверх, пары охлаждаются, а Жидкость на тарелке нагревается. При этом часть паров, преимущественно высококипящие компоненты, вследствие соприкосновения с более холодной жидкостью конденсируется, а выделившееся при конденсации тепло, а также тепло паров затрачивается на испарение части жидкости—легкокипящих компонентов. Таким образом, каждая тарелка является как бы отдельным сосудом, где происходит одновременно процесс испарения и конденсации. [c.82]

    Расчет процесса периодической азеотропной рекгификацин может производиться следующим образом. По заданным составам и количествам начальной смеси и отбираемого дистиллата с помощью уравнений (261) рассчитывается состав кубовой жидкости к концу процесса. По найденному составу кубовой жидкости и известному составу дистиллата с помощью описанных выше методов рассчитывается число тарелок, и флегмовое число, требующееся для достижения заданной степени разделения в конце процесса. Затем для нескольких флегмовых чисел, меньших найденного в предыдущем расчете, по заданному составу дистиллата определяется состав кубовой жидкости, получающейся при ректификации в колонне с найденным для конца процесса числом тарелок. Описанным способом устанавливается зависимость потребного флегмового числа от состава жидкости в кубе. Расчеты могут производиться аналитически ( от тарелки к тарелке ) или описанными выше графическими методами, [c.245]

    Одним из перспективных направлений примененшг подобных САЭ является использование их при проектировании технологического оборудования. В систему расчета колонны как бы включается физическая модель - тарелка. Процедура потаре-лочного расчета колонны строится таким образом, что при движении от тарелки к тарелке вычисляются потоки Ь к О, которые автоматически устанавливаются на тарелке (гидравлическом стенде), после чего определяется реальный к.п.д. тарелки, который участвует в расчетах каждой последующей ( + 1) тарелки. Последовательная процедура расчетов и экспериментов повторяется до удовлетворения проектных заданий. Использование натуральной тарелки в проектных расчетах по существу решит проблему масштабирования и позволит через систему САЭ перейти к выбору конструкции и расчету промышленной колонны. Если с помощью УВМ регулировать состав жидкости и пара X/, yj, расходы Ьу1 С, температуру жидкой и паровой фаз, то можно воспроизвести работу всей проектируемой колонны. В этом случае роль физической модели (гидравлический стенд) качественно меняется. Он становится частью вьгаислительного комплекса, ее операционным блоком. [c.164]

    Процесс изменения температуры и состава паров и жидкости повторяется от тарелки к тарелке таким образом, обогащение паров происходит по ступенчатому закону. В насадочной колонне при прохождении потока паров над пленкой жидкости, орошающей насадку, имеет место непрерывный процесс массообмена. Однако ни в каком месте насадки пары не остаются настолько долго, чтобы между ними и пленкой жидкости могло установиться термодинамическое равновесие. Непрерывное обогащение достигается в результате многих элементарных актов разделения. Поэтому для характеристики насадочных колонн ввели термин высота единицы переноса (heigt of transfer unit — HTU). [c.99]

    Райхельт [14а] описал тарельчато-насадочные колонны. В этих колоннах на колосниковых решетках или тарелках размещены слои насадки, состоящие обычно из легких шариков. При работе колонны в условиях противотока фаз на тарелках образуются кипящие слои насадки, обеспечивающие повышение пропускной способности колонны. [c.335]

    Колонные аппараты — различного диаметра с 8-образиыми тарелками. [c.98]


Смотреть страницы где упоминается термин Тарелки образующей тарелок: [c.458]    [c.72]    [c.78]    [c.352]    [c.153]    [c.233]    [c.131]    [c.270]    [c.286]    [c.616]    [c.286]    [c.290]    [c.83]    [c.146]   
Центрифуги и сепараторы для химических производств (1987) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте