Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микромир

    В связи с уменьшением числа часов, отводимых на чтение лекции по химии, возникла необходимость пересмотра материала лекций в сторону его сокращения. По программе тема Строение атома должна быть обязательно раскрыта, и на это приходится отводить не более чем полторы лекции. Целесообразно начать лекцию о составе атома, какие частицы входящего образуют, их зарядах, массах, когда они открыты и кем. Затем напомнить студентам о модели атома Резерфорда. Особенную трудность вызывает необходимость очень кратко и в то же время доходчиво изложить основные положения квантовой механики. При изложении вопроса о двойственной природе объектов микромира достаточно привести уравнение Де-Бройля (без вывода) и обсудить его, привести примеры, экспериментально доказывающие волновые свойства потока электронов. Рассказать, что О положении электрона в атоме можно судить только с точки зрения теории вероятности. Дать квантовомеханическую модель электрона как облака отрицательного электричества, имеющего определенную форму и размеры, рассказать, что означает понятие орбиталь . [c.170]


    Особенности микромира. Основные положения квантовой механики. Квантование энергии. Корпускулярно-волновой дуализм. Принцип неопределенности. Волновая функция. Атомная орбиталь. Вероятность и плотность вероятности. Квантовые числа. Энергия, форма и расположение в пространстве атомных орбиталей. [c.17]

    Перейдем к рассмотрению основного закона микромира — уравнению Шредингера. Предварительно установим необходимые физические характеристики и уравнения волнового движения. [c.9]

    Объясните, как тепловая и кинетическая энергии описывают движение объектов макро- и микромира. Какой из этих видов энергии описывает движение на молекулярном уровне  [c.84]

    По мере возрастания числа трудностей при использовании теории Бора — Зоммерфельда, становилось очевидным, что она является лишь переходным этапом на пути создания теории микромира и необходимо дальнейшее углубление наших представлений о природе вещества. [c.17]

    В термодинамике рассматриваются системы (см. 1.9), состоящие из очень большого числа микрочастиц — молекул, атомов, ионов и др. Современная термодинамика использует статистические закономерности, относящиеся к массовым явлениям, коллективам из большого числа взаимосвязанных частиц. Свойства макротел качественно отличаются от свойств микрочастиц. Законы, которым подчиняются явления макромира, взаимодействия макротел друг с другом и окружающей средой, глубоко и качественно отличаются от законов микромира. [c.35]

    Первое, что осознал Бор, — это неприменимость законов классической физики в микромире. На все возражения, сводившиеся к выводу о неизбежности падения электрона на ядро, он отвечал Но ведь атом все-таки устойчив . [c.10]

    Что же такое электрон Как.устроена эта частица, совмещающая в себе несовместимое Вопрос этот до сих пор не получил ответа. В 1920-х гг., на заре квантовой механики, физики поставили перед собой другую задачу — построить механику микромира, т. е. найти законы, определяющие движение электрона в различных условиях, не прибегая к моделям, описывающим его внутреннюю структуру. [c.25]

    На основе теории типов Жерара зародилось представление о строго определенной, дискретной, квантованной характеристике атома — его валентности. Обнаружение дискретности химического сродства, распадающегося на единицы валентности, ознаменовало смелое проникновение химии в микромир. Учение о валентности стало тем фундаментом, на котором было воздвигнуто здание структурной химии с его формальным языком. Основным постулатом химического формализма в органической химии явилось представление о постоянной четырехвалентности углерода. При помощи его удалось найти удовлетворительные валентные схемы для непредельных и ароматических соединений, используя понятие кратной связи. [c.29]


    Наличие узловых поверхностей в атомах и молекулах связано с общими закономерностями микромира. Движение микрочастиц описывается соотношениями, аналогичными уравнениям волнового движения. В любой волне имеются точки, где смещение колеблющейся величины равно нулю. Если колебательный процесс происходит в трех измерениях, то совокупно ь данных точек образует узловую поверхность. [c.25]

    Формулы (6.4) — (6.6) отражают явление квантования, характерное для микромира. [c.25]

    Периодический закон и периодическая система элементов оказали огромное влияние на развитие науки и техники они послужили теоретическим фундаментом направленного поиска и открытия за истекшее столетие 46 новых элементов из 107 известных в настоящее время. Кроме того, закон Д. И. Менделеева послужил толчком к исследованиям строения атома, которые изменили наши представления о законах микромира и привели к практическому воплощению идеи использования ядерной энергии. [c.23]

    В нашем представлении общая теория печей может быть разработана только на основе определенной схематизации тепловой работы печей, учитывающей только общие черты этой работы, т. е. в известной степени на основе абстрактного представления о работе печей. Практическое значение. общей теории печей заключается в формулировании положений для конструирования печей как существующих в настоящее время, так и могущих возникнуть в будущем в связи с появлением новых технологических процессов. Теоретическими основами общей теории печей является физика (главным образом техническая) и физическая химия. Если будет уместно физику и физическую химию сравнить с корневой системой дерева, то общая теория печей есть ствол, ветви которого можно рассматривать как частные функциональные теории печей конкретного технологического назначения. Подобно термодинамике, механике жидкостей и газов и учению о тепло- и массообмене, общая теория печей есть наука феноменологическая, рассматривающая явления как таковые, не касаясь механизма тех или иных процессов, сущность которых по-настоящему раскрывается при рассмотрении явлений на уровне микромира. Поэтому представления из области микромира привлекаются только в тех случаях, когда иначе нельзя объяснить сущность того или иного процесса. [c.11]

    Первой из важных характеристик электрона в атоме является то, что он находится в непрерывном движении. Если бы этого движения не было, то электрон упал бы на ядро, так как между положительно заряженным ядром и отрицательно заряженным электроном существует огромная сила притяжения. Состояние электрона в атоме не поддается описанию с помощью законов обычной механики макроскопических тел. В физике микромира действуют другие законы. Их описывают с помощью науки, которая называется квантовой механикой. [c.25]

    Все же теория Бора была важным этапом в развитии представлений о строении атома как и гипотеза Планка—Эйнштейна о световых квантах (фотонах), она показала, что нельзя автоматически распространять законы природы, справедливые для больших тел — объектов макромира, на ничтожно малые объекты микромира — атомы, электроны, фотоны. Поэтому и возникла задача разработки новой физической теории, пригодной для непротиворечивого описания свойств и поведения объектов микромира. При этом в случае макроскопических тел выводы этой теории должны совпадать с выводами классической механики и электродинамики (так называемый принцип соответствия, выдвинутый Бором). [c.45]

    Уравнение (ХХ.8) носит название уравнения Шредингера и является основой механики микромира. В этом уравнении задаются масса частицы т и поле U, в котором частица движется. Искомыми являются функции гр и энергия Е. Из одного уравнения обе эти величины можно определить, потому что, помимо уравнения, задаются краевые условия. [c.428]

    Масса частиц микромира сравнительно с макротелами весьма мала и поэтому длины волн их колебаний (волн де Бройля) достигают измеримых величин. Так, для электрона (при v=2,l7 Ю м/с) [c.55]

    Соотношение неопределенностей делает понятными многие особенности микромира. Оно часто позволяет быстро и просто оценить эффект, точный расчет которого сложен. Покажем это на одном примере — рассмотрим с помощью соотношения неопределенностей движение электрона в атоме водорода. [c.28]

    Существование у частиц нулевой энергии является одной из характерных черт микромира. Это связано с корпускулярно-волновой природой микрочастиц. Общий характер данной закономерности следует из соотношения неопределенности. Мы видели (см. стр. 28—29), что локализация электрона в некоторой области пространства обусловливает появление у него некоторого импульса и, следовательно, кинетической энергии, которая тем больше, чем более ограничено движение электрона. То же можно сказать и о любой другой микрочастице.Не существует такого состояния вещества, в котором кинетическая энергия его частиц была бы равна нулю. Даже при температуре абсолютного нуля не только электроны, но и атомы в целом будут находиться в непрерывном движении, совершая колебания около положения равновесия. [c.31]


    Поместим магнитное ядро в магнитное поле. Испустив избыток энергии, оно должно было бы расположиться параллельно магнитным силовым линиям этого поля так было бы в том случае, если бы ядро не было микрочастицей. Но в микромире многое происходит не так, как предсказывает классическая физика. В частности, вектор магнитного момента ядра не может расположиться параллельно направлению приложенного магнитного поля он может лишь совпадать (или не совпадать) с этим направлением. Хотя абсолютное значение вектора магнитного момента ядра можно вычислить довольно точно, его положение в пространстве можно задать только проекцией на направление приложенного магнитного поля Яд. [c.12]

    Оказывается, атомы и молекулы излучают электромагнитные волны отдельными группами. Каждая такая группа волн распространяется как одно целое и обладает рядом свойств, характерных для частиц. Ее и называют по аналогии с другими частицами микромира 0о-тоном. При взаимодействии света с различными веществами фотон действительно ведет себя как частица. Так, например, ни разу не было обнаружено поглощение части фотона. Всегда вся группа волн, составляющих фотон, поглощается целиком, отдавая всю свою энергию. [c.21]

    Остается еще выяснить вопрос о происхождении определенных уровней внутренней энергии атома. Для этого сначала необходимо познакомиться с одной важной особенностью частиц микромира. [c.31]

    Развитие наших представлений о законах движения материи оказалось тесно связанным с изучением микромира. С возникновением атомной и ядерной физики родилась и новая научная картина природы. [c.28]

    Действие соотношений неопределенностей проявляется во всем устройстве микромира. С его помощью легко ответить, например, на не вполне ясный с точки зрения классической механики вопрос [c.19]

    Теперь рассмотрим молекулу водорода. Здесь химическая связь образована парой электронов. Если спаривание электронов при образовании химической связи энергетически выгодно, т. е. способствует ее образованию, то энергия связи в молекуле водорода должна быть значительно (или несколько) больше, чем удвоенная энергия связи в молекулярном ионе водорода HI Если же спаривание электронов энергетически невыгодно и является лишь неприятным , вынужденным следствием принципа Паули, то энергия связи в молекуле Нг должна быть меньше удвоенной величины энергии связи в Н2+. Так как энергия связи в молекуле водорода составляет величину 104 ккал/моль, то это и доказывает второе предположение. С точки зрения квантовой механики, самой точной науки о микромире, молекула — это совокупность ядер н IIIA" н атомов и электронов. Никаких Н- - 1,5ПА Н неизменных атомов, связанных химическими связями, в молекуле. н - л нет. Например, молекула воды [c.18]

    Соотношения неопределенностей свидетельствуют об отсутствии классического детерминизма в микромире, основное положение которого заключается в том, что если мы точно знаем настоящее, то сможем вычислить и будущее . Однако в этом утверждении, как отметил В. Гейзенберг, ошибочен не вывод, а предпосылка, так как в соответствии с соотношением неопределенности мы никогда не сможем точно знать настоящее. [c.19]

    Рассмотренные выше теоретические представления и экспериментальные данные убедительно свидетельствуют о том, что с помощью классической физики нельзя полностью интерпретировать свойства элементарных частиц. Раздельное рассмотрение волны и частицы не позволяет проникнуть в сущность микромира. Электрон, например, — это и не частица и не волна, тем не менее это вполне реальный объект, во многом определяющий свойства химических веществ. Заслугой Гейзенберга, Борна, Шрёдингера и Дирака является то, что они заложили основы такой механики , которая правильно описывает свойства электронов и позволяет более глубоко понять сущность материи. Чтобы более ясно представить себе основы квантовой механики, необходимо отойти от привычных понятий, которые от долгого употребления стали слишком наглядными . Физика [c.28]

    Обнаруженная Гамильтоном оптико-механическая аналогия , без малого 100 лет не привлекала к себе практически никакого внимания. Полученные английским ученым аналитические результаты был затем использованы К. Якоби в теоретической механике и X. Брюнсом в оптике (теория эйконала). Аналогия оказалась разъятой, на нее никто, кроме, может быть, проницательного Ф. Клейна, в XIX в. и в начале XX столетия не обращал внимания. Только де Бройль сумел понять ее значение для физики микромира. Именно глубокий анализ оптико-механической аналогии Гамильтона, в совокупности с другими идеями, привел его к гипотезе о волне-частице , т. е. к мысли о двойственной корпускулярно-волновой природе микрообъектов. [c.25]

    Идея предлагаемого подхода к исследованию спектров веществ состоит в отказе от изучения электронного строения и их тонкой структ])фы. Эта, на первый взгляд, странная мысль привела к поиску и установлению принципиально новьпс закономерностей в спектроскопии. Я не сомневаюсь, что найдены новые закономерности, связывающие оптические, цветовые характеристики и различные свойства материи. Подробно история этого направления изложена в публикации. Полученные нами результаты свидетельствуют о том, что свет, которым наполнен мир от микромира до межзвездных пространств Вселенной, несет информацию обо всех ее свойствах [c.63]

    Уровень развития современной химии ставит перед иселедова-телями все более сложные задачи, для решения которых уже недостаточно перечисленных методов. И физическая химия попол няегся новейшими методами исследования, основанными на законах молекулярной и статистической физики, а также квантовой механики. У химиков появилась возможность заглянуть в микромир вещеотва, выяснить строение молекул и атомов, уетановить природу химической связи и на основе этого лучше понять сущность явлений природы. [c.7]

    Введение релаксационного спектра соответствует использованию интерлинга физики — теории колебаний для описания структуры и подвижности в полимерах. Пока мы говорили только, о макромолекуле, но тот же спектрометрический подход пригоден для любых полимерных тел с их сложной иерархией уровней структурной организации. Полезно бросить взгляд в обратном направлении , вернувшись от макромолекул к простым молекулам (детализацией — для упражнения — мы предлагаем заняться самим читателям). Как известно, они тоже располагают своими характеристическими спектрами, которые тоже выявляются при воздействии на них с разной скоростью только теперь это периодические воздействия и вместо времени воздействия мы вводим частоту V, впрочем, в квантуемых системах можно вернуться к импульсу и стрелке действия. При этом выявляется одна совершенно общая характеристика стрелки действия. Все релаксаторы (или осцилляторы — в оптическом диапазоне частот), расположенные в координатах д—х (х=1Н) слеза от стрелки действия, или Ха (см рис. 1.14), реагируют на воздействие неупругим образом, т. е. претерпевают внутреннюю перестройку, изменяют частоту и т. п. С п р а Б а от Тл ответ на воздействие упругий релаксаторы (или осцилляторы) не успевают отреагировать на воздействие в микромире это связано, например, с упругим рассеянием элементарных частиц в макромире, при достаточно больших силах и энергиях воздействия, это приводит к разрушению системы. [c.52]

    Для обоснования планетарной модели атома водорода Бор воспользовался теорией квантов Планка. Он предположил, что в атомах может существовать лишь определенное расположение электронов, которое Бор назвал устойчивыми состояниями. Каждое такое состояние характеризуется своей энергией. Таким образом. Бор отказался от идеи о непрерывном излучении энергии электронами в атомах, но не смог освободиться от прнменения классической механики к структурам микромира. Б этом исходная принципиальная несостоятельность его выводов. [c.53]

    Важно, чтобы это положение было понято уже сейчас, в преддверии волновой механики. Концепции, которые мы будем использовать, это не концепции нашего каждодневного опыта, так как последние противоречат нашим наблюдениям в микромире. Вполне возможно, что дилемма волна — частица это иллюзия. Трудность может возникнуть и от того, что во всем нашем предыдущем жизненном опыте мы наблюдали только два типа движения и вполне естественно выглядела бы попытка объяснить движение атома или электрона, исходя из нашего каждодневного опыта. Единственное, что мы действительно можем утверждать, это то, что поведение электрона может быть описано уравнением такой же общей формы, какую имеет уравнение волнового движения. И тем не менее независимо от того, к какому философскому выводу можно было бы придти в отношении характеристик атома, мы должны допустить, что уже невозможно построить детерминистскую модель в классическом смысле, и какой бы тип модели мы не использовали, он должен согласовываться с опытом. Это значит, что мы должны признать волноподобное поведение системы и вероятностный характер наших наблюдений. [c.44]

    Но такой масштаб лишает нас возможности рассматривать ход развития науки более конкретно и с несравненно большим интересом. Исходя из тех же идей Пригожина, в послегалилеевском естествознании можно отчетливо различить такие три его блока, как 1) классическое естествознание от Ньютона до Менделеева, 2) некласснческое естествознание, стержнем которого следует считать квантовую механику и квантовую электродинамику и 3) естествознание сегодняшнего дня с синергетической основой. Последовательность появления этих блоков представляет собой иерархию трех уровней развития естествознания, происходящего как бы по спирали. Основным объектом исследования на первом уровне являются макротела и равновесные макросистемы, законы движения которых (механику Ньютона) естествоиспытатели распространяют и на микромир, т, е. на все формы коллективизации атомов, рассматриваемых в качестве неизменных элементарных частиц размером 10 —10 см. Главным же объектом естествознания второго уровня служат микросистемы, характеризующиеся [c.213]

    Такое квантовое условие стабильности движения совершенно необычно, Всегда при вращении какого-либо тела или частицы устойчивое периодическое движение получается при равенстве центробежной и центростремительной силы. Например, искусственный спутник Земли может устойчиво вращаться по любой орбите, если скорость его достаточно велика, чтобы сила притяжения к Земле уравновенщвалась центробежной силой. Для частиц микромира это равенство сил тоже [c.31]


Смотреть страницы где упоминается термин Микромир: [c.69]    [c.142]    [c.17]    [c.23]    [c.209]    [c.29]    [c.47]    [c.24]    [c.32]    [c.55]    [c.163]    [c.214]   
Квантовая механика (1973) -- [ c.13 ]

Термодинамика реальных процессов (1991) -- [ c.47 ]




ПОИСК







© 2025 chem21.info Реклама на сайте