Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механические свойства материалов при различной температуре

    Данные о коррозионной стойкости различных металлов и сплавов, а также неметаллических покрытий в водных растворах формальдегида [34, 35] приведены в Приложении 1. Для сравнения там помещены соответствующие данные для растворов муравьиной кислоты, не содержащих формальдегид, а также сведения о коррозионной агрессивности метанола. Как следует из сопоставления таблиц Приложения I, достаточно стойкими к воздействию растворов формальдегида при нормальной и повышенной температуре являются такие металлы, как чистое железо и алюминий, медь, никель, свинец, серебро, тантал, титан и др. Многие из этих металлов, а также платина, ниобий и цирконий мало подвержены коррозии и в присутствии значительных количеств муравьиной кислоты. Однако большинство перечисленных материалов либо слишком дефицитны, либо по физико-механическим свойствам непригодны для изготовления производственной аппаратуры. Из числа конструкционных материалов, применяющихся на практике, достаточно стойки по отношению к формалиновым растворам, в особенности при повышенной температуре, далеко не все. С учетом практической неизбежности накопления хотя бы небольших количеств муравьиной кислоты, непригодны для работы в формалиновых средах, помимо углеродистых сталей, хромистые сплавы, а также некоторые марки алюминия, бронзы, латуни, чугуна и т. д. Напомним, что в соответствии с действующим ГОСТом по коррозионной стойкости металлы разделяются на шесть групп и оцениваются по десятибалльной шкале, причем при скорости коррозии выше 0,1 мм/год материал считается пониженно стойким. [c.30]


    В табл. 12 и 13 приведены механические свойства титана различной чистоты и промышленных марок, а в табл. 14 и 15 — свойства титана при различных состоянии материала и температуре. [c.14]

    Важное значение с точки зрения коррозионной ползучести и разрушения материалов имеет вопрос об адгезии оксида к металлу, так как окалина, отслаивающаяся от подложки, конечно же, не оказывает влияния на механические свойства материала. Например, высокотемпературная коррозия, как уже обсуждалось, обязательно подразумевает ухудшение адгезии или даже полное отделение окалины. Отслаивание оксида также может быть вызвано рассмотренными выше температурными напряжениями. Различные механизмы отслаивания оксидов, в том числе связанные с уменьшением пластичности, ползучестью и усталостью материала, рассмотрены в обзоре [135]. Согласно экспериментальным данным, отслаивание оксида может протекать легко. Например, на сплаве Ni—20 Сг—4 А1 отделение оксида наблюдалось после одного цикла изменения температуры от 300 °С до комнатной [135]. Исключение могут составлять сплавы, содержащие легирующие добавки РЗЭ, улучшающие адгезию оксида к металлу [111]. [c.31]

    Предполагается, что, кроме названных выше основных эффектов, связанных с наличием окалины, на свойства материала подложки вблизи поверхности могут влиять и другие поверхностные факторы. В частности, модуль упругости и параметры решетки очень тонкого ( — 30 А) приповерхностного слоя могут изменяться в результате адсорбции атомов газовой фазы [114]. На подобные эффекты ссылаются при объяснении ухудшения механических свойств поверхностных слоев некоторых неметаллических твердых материалов под влиянием адсорбции во влажных средах [136]. Наглядной иллюстрацией служит рис. И, где представлены данные об уменьшении временного сопротивления серебряной проволоки при высоких температурах в атмосферах различных газов (изменения наиболее велики в случае более тонкой проволоки) [137]. [c.31]

    Стабильность механических свойств материала при длительной эксплуатации в значительной степени обеспечивает надежную работу оборудования, однако при эксплуатации в водородсодержащих средах необходимо знать, как влияет водород на механические свойства сталей различных марок в зависимости от температуры, давления и продолжительности воздействия. [c.365]


    Для мягкого полиэтилена требуются следующие температуры в цилиндре шприц-машины повышение температуры от 90 до 250 °С для червяка с плавно уменьшающейся глубиной канала и от 220 до 250 °С для червяка с короткой зоной сжатия. Температура головки должна быть во всех случаях равна приблизительно 250 °С. Однако нельзя задать температурный режим, благоприятный для всех случаев переработки, так как конструкции червяка и головки, а также свойства материала различны. Для твердого полиэтилена и полипропилена эффективные температуры шприцевания на 30—50 °С выше, чем для мягкого полиэтилена. Температура воды в охлаждающей ванне для всех полиолефинов равна 30—60 °С. При более высокой температуре воды повышается склонность пленки к склеиванию, но улучшаются ее механические свойства . [c.141]

    Так как термостойкость полимерного материала зависит в конечном счете от конкретных условий эксплуатации, были разработаны соответствующие методы испытания. Хотя во многих случаях целесообразность применения каждого метода определяется несколькими показателями, наиболее важными являются данные об изменении во времени физических, механических и электрических свойств при различных температурах. [c.28]

    Физико-механические свойства. Механические свойства материала П-5-5 при нормальной температуре определялись на трех различных производственных партиях образцов. Результаты испытаний по каждой партии в отдельности представлены в табл. 2.43. [c.80]

    Физико-механические свойства. Механические свойства материала П-5-12 в интервале температур —60- 500° С определялись на двух различных партиях образцов. Кривые деформирования показаны на рис. 13, а, б. [c.102]

    Из рис. II. 19 видно, что для определения какой-либо механической характеристики полимерного материала надо знать, как она изменяется в широком интервале времен при различных температурах. Действительно, если соответствующая характеристика известна при определенных времени и температуре Ти то для оценки изменения интересующих нас механических свойств при некоторой температуре Тг необходимо знать либо энергию активации (чтобы использовать формулы теории линейной вязкоупругости), либо их эмпирические зависимости, чтобы на основе известных данных получить информацию о закономерностях их [c.175]

    Иногда возможность использования пластмассы для работы при различных температурах выявляется путем проведения обычных испытаний механических свойств при соответствующих температурах Результаты таких испытаний являются весьма ценными для конструкторов, так как дают полное представление о поведении материала в разных условиях. На рис. 23 представлены температурные зависимости предела прочности при растяжении, удлинения при разрыве, ударной вязкости при изгибе и модуля упругости. [c.62]

    Механические свойства любого материала оцениваются по механическому поведению при различных, внешних условиях. Далее предполагается, что одно из внешних условий (напряжение или деформация) определенным образом задано, а все другие внешние условия (температура, давление воздуха, влажность и др.) остаются постоянными. Механическое поведение материала понимается, следовательно, как изменение во времени деформации при заданном напряжении или изменение напряжения при заданной деформации. Постоянные, которые входят в уравнение, определяющее зависимость между напряжением, деформацией и временем, характеризуют механические свойства материала. [c.7]

    Внутренние устройства барабанных сушилок предназначены для равномерного распределения высушиваемого материала, обеспечения контакта с рабочим газом по всему сечению барабана. Внутренние устройства должны интенсивно перемешивать материал без его измельчения. В зависимости от физико-механических свойств обрабатываемого материала и характера их изменения по длине сушилки располагают различные насадки. Так, сушилка, показанная на рис. 12.13, снабжена последовательно, по ходу материала, винтовой насадкой 7, подъемно-лопастной насадкой 6, а затем секторной насадкой 5. Насадки этих трех типов широко распространены в различных модификациях (рис. 12.14). Из-за больших размеров сушильных барабанов и высоких перепадов температур в местах приварки к барабану внутренних устройств их изготовляют из коротких секций, а иногда крепят к барабану болтовыми соединениями. [c.372]

    Структурно-механическая прочность и агрегативная устойчивость нефтяных дисперсных систем. Одной из основных проблем коллоидной химии нефтей и их фракций является исследование, пространственных структур различного рода в нефтяных дисперсных системах и регулирование разнообразными приемами их механических свойств деформационных и прочностных. Необходимость решения данной проблемы способствовала становлению самостоятельной области коллоидной химии — физико-химической механики нефтяных дисперсных систем. Обобщение значительного эмпирического материала позволило в работе [112] предложить с точки зрения макрореологии (диаграмму изменения структурномеханической прочности с ростом температуры в многокомпонентных нефтяных дисперсных системах (рис. 5). Участок ВГ, имеющий различную ширину в зависимости от строения исследуемой нефтяной системы и вырождающийся в точку для битумов, характеризует ньютоновское поведение в полностью разрушенной структуре, вязкость которой не зависит от скорости сдвига. Точка В отвечает пределу текучести системы. С понижением температуры нефтяная система становится тгересыщенной по отношению к твердым углеводородам, выделение которых из однородного с реологической точки зрения расплава приводит к структурированию системы. На участке БВ взаимодействие формирующихся структурных элементов обуславливает вязкопластическое течение обратимо разрушаемой структуры и наличие предельного напряжения сдвига в точке Б. По мере снижения температуры на этом участке скорость формирования коагуляционных контактов мел ду надмоле- кулярными структурами превышает скорость их разрушения под действием механической нагрузки. В точке Б нефтяная система те- [c.38]


    Высокая коррозионная стойкость циркония и сплавов на его основе в очень агрессивных средах, в частности в соляной кислоте, применимость различных видов механической обработки циркония— ковки, штамповки, развальцовки, сварки и др., сохранение благоприятных физико-механических свойств при повышенных температурах определяют широкое применение этого металла в качестве конструкционного материала и в химическом машиностроении. [c.288]

    Вязкость расплавов полимеров зависит главным образом от их молекулярной массы и ММР. Большое значение имеет предыстория образца, даже если условия его переработки не в состоянии вызвать разрыв макромолекул. Это важно, так как одни и те же образцы, смешанные или гранулированные в различных условиях, могут перерабатываться разными способами. Так, влияние предварительной переработки в условиях воздействия сдвиговых деформаций на свойства материала явно обнаружено при изучении полипропилена [811]. Образец, пропущенный через капиллярный реометр при различных условиях (скоростях сдвига, напряжениях, температуре и геометрических размерах капилляра), проявил различные вязкоупругие свойства, характеризуемые вязкостью, снижением напряжений сдвига, разбуханием экструдата и значением критической скорости сдвига при разрушении расплава). Установлено, что эти изменения свойств не зависят от молекулярной массы и ММР, однако впоследствии они могут повлиять на механохимические процессы. Для кристаллических полимеров различие в предыстории сдвигового воздействия приводит к изменению морфологии, что в свою очередь сказывается на изменении механических свойств материала. Сте-352 [c.352]

    Обобщенным показателем, характеризующим влияние температуры на физико-механические свойства материала, являются температурные коэффициенты, представляющие собой средние значения изменения различных показателей — разрушающих напряжений при растяжении и изгибе, модуля упругости при растяжении и т. д. (при изменении теь пературы на 1 °С в различных температурных интервалах). Значения этих коэффициентов приведены в табл. 1. 3. Несмотря на то что температурные коэффициенты механических свойств различны в зависимости от марки стекла, наблюдается общая тенденция их возрастания по мере приближения температур испытания к температуре стеклования. [c.14]

    Одной из основных характеристик пружинения заготовки являются его физико-механические свойства, зависящие от температурного состояния материала. Формулы (6) и (7) сохраняются и для случая деформирования металлов в нагретом состоянии. В этом случае значения А, т и п должны подставляться для соответствующих значений температур. Влияние каждого из указанных параметров на величину пружинения различно. Если [c.26]

    Фторопласт-4 — легко комкующийся порошок, из которого формованием и термической обработкой получают различные изделия, работающие в наиболее агрессивных средах при температуре до 250 °С. Обладает высокими механическими свойствами, однако сварке не поддается и плохо склеивается. Благодаря низкому коэффициенту трения успешно применяется в качестве наби-вочп(зго материала для сальниковых уплотнений. Применяется также для изготовления втулок подшипников скольжения. [c.39]

    Применяют два способа размагничивания. Наиболее эффективный из них - нагрев изделия до температуры точки Кюри, при которой магнитные свойства материала пропадают. Этот способ применяют крайне редко, так как при таком нагреве могут изменяться механические свойства материала детали, что в большинстве случаев недопустимо. Второй способ заключается в размагничивании детали переменным магнитньпи полем с амплитудой, равномерно уменьшающейся от некоторого максимального значения до нуля. В зависимости от материала изделия, его размеров и формы применяют переменные магнитные поля различных частот от долей Гц до 50 Гц. [c.160]

    Сравнительная значимость процессов самосортирования и просеивания определяется в основном соотношением сходовой и проходовой фракций. При наличии относительно малого количества проходовой фракции (например, в рассевах первых драных систем) эффективность зависит от ее факторов физико-механических свойств частиц смеси, температуры и влажности исходного продукта, соотношения компонентов различной крупности, удельной нагрузки на сито (толщина слоя), материала и качества изготовления сита, размеров и формы его отверстий, конструкции рассева, условий транспортирования смеси, кинематических параметров, способа очистки сит, аспирации и др. [c.471]

    Улучшение механических характеристик — прочности, долговечности катализаторов, носителей и сорбентов — становится все более важной задачей химической технологии в связи с интенсификацией каталитических процессов. Отыскание и научное обоснование оптимальных методов приготовления катализаторов с заданными физико-химическими и механическими свойствами, а также задачи стандартизации и выбора правильных критериев для сргкнительной оценки качества материалов, выпускаемых различными предприятиями, настоятельно требуют дальнейшей разработки и усовершенствования методов и приборов для механических испытаний катализаторов [1]. Эти испытания должны включать ряд методов, позволяющих оценивать материал с разных сторон, -в соответствии с различными возможными условиями механических воздействий [2]. Действительно, в металловедении, например, для всесторонней оценки механических свойств материала давно используются разнообразные, в совершенстве разработанные статические, ударные и усталостные испытания аналогично и в рассматриваемом иами специфическом случае высокодисперсных тонкопористых материалов — катализаторов, носителей, сорбентов, где работы в данном направлении еще только начинают развиваться, оценка механических характеристик также должна быть всесторонней и проводиться в различных условиях статических и динамических нагрузок. Этот комплекс методов должен включать испытания в условиях, отвечающих реальным условиям эксплуатации, поскольку в ходе реакции, при совместном действии механических напряжений, температуры и активной среды, могут наблюдаться резкие изменения прочности и долговечности гранул [14—18]. Вместе с тем для повседневного контроля качества материала на основе такого все-сторойнего обследования целесообразно выделение лишь одно-го-двух методов, самых характерных для данного типа гранул,— как пра вило, таких, которые наиболее чувствительны к минимальным значениям прочности. [c.5]

    В практике переработки полимеров для достижения заданного комплекса физико-механических свойств материала используется метод механического смешения различных полимеров. Если при этом повышается деформируемость материала под действием механических усилий, то такой метод может быть отнесен к процессам нластификации полимера полимером. Температура стеклования смещается в сторону более низких температур, растет деформируемость материалов, а прочностные свойства надают. Однако это уменьшение прочности материала при пластификации полимера высокомолекулярными соединениями наблюдается в меньшей степени, чем нри пластификации полимера низкомолекулярными соединениями [21]. [c.287]

    Резина и текстиль для плоскослойных, соосных или иных ре-зино-текстильных конструкций обладают высокоэластическими свойствами и характерно выраженной релаксационной способностью. Значительная зависимость их механических свойств от скорости деформации (или частоты в периодических циклах) и температуры существенно отличает их от обычных упругих материалов. Эти свойства определяют различие конструкционных особенностей резиновых и текстильных изделий. В резине, рассматриваемой как однородный химический продукт, характер деформаций количественно и качественно зависит от напряжения приложенной нагрузки. Это различие сказывается и при растяжении (например, вследствие так называемого каландрового эффекта), а также при сжатии и изгибе (вследствие различия модулей упругости при растяжении и сжатии). Материалы с такими свойствами называются анизотропными. Анизотропность не следует смешивать с неоднородностью, характеризуемой различием механических свойств в различных местах образца материала. [c.66]

    На рис. 1У.41 приведена зависимость коэффициента трения пенополистирола от давления при различных температурах. Из рисунка видно, что стабилизация коэффициента трения происходит при высоких температурах раньше, чем при низких. С ростом нагрузки коэффициент трения возрастает, стремясь к определенному пределу для каждой температуры, который обусловлен физико-механическими свойствами материала в данных конкретных условиях. Например, при 20 °С и давлении 0,7 кгс/см2 коэффициент трения равен 0,36, а при 105 °С и таком же давлении коэффициент трения не превосходит 0,15. Это объясняется тем, что с повышением температуры выше температуры стеклования пенополистирола резко изхменяются механические свойства полимера падает прочность, возрастает относительное удлинение и т. д., что вызывает значительное уменьшение удельной силы трения. Уменьшение удельной силы трения может быть столь велико, что увеличение фактической площади контакта с ростом температуры не приводит к увеличению силы трения. Это необходимо учитывать при расчетах режимов формования пенопласта непрерывным методом. [c.142]

    Модификация ДСТ-30 с помощью окиси и двуокиси углерода позволила получить полимеры с карбоксильными и сложноэфирными группами в бутадиеновой части. При введении в модифицированный термрэластопласт окисей и гидроокисей металлов достигается увеличение тепло- и температуростойкости при сохранении вязкотекучих свойств, достаточных для осуществления экструзии материала [27]. Созданием композиций на основе термоэластопласта обычно преследуют цель снизить е.го стоимость, поэтому вводят такие материалы, как масла, различные смолы, мел и т. д. Однако модификация бутадиен-стирольного термоэластопласта хлоропреновыми, бутадиен-нитрильными каучуками и друсими высокомолекулярными добавками позволяет улучшить их масло- и бензостойкость, адгезию и снизить температуру переработки без существенного снижения физико-механических свойств [28]. Из композиций на основе бутадиен-стирольных термоэластопластов изготовляют формовые изделия, резиновую обувь, пластины, покрытия для полов, листы для печатных матриц, спортивные товары (ласты, маски, тенисные мячи), кожухи для оборудования и приборов, эластичную тару и др. [c.290]

    Фторопласту-4 присущи недостатки он имеет малую твердость, плохо сопротивляется деформациям, при работе без смазки быстро изнашивается. Теплопроводность фторопласта-4, составляющая X = = 0,25 втЦм-град), исключительно мала — приблизительно в 180 раз меньше, чем у стали. Линейный же коэффициент теплового расширения этого материала весьма высок — в области температур, при которых в компрессоре работают подвижные уплотнения, он находится в пределах (110—150) 10 град , т. е. более чем в 10 раз выше, чем для стали и чугуна. В связи с такими недостатками фторопласт-4 для поршневых колец и уплотняющих элементов сальника применяют не в чистом виде, а с различными наполнителями, повышающими его износоустойчивость, прочность и теплопроводность. Наполнителями являются стекловолокно (15—25%), бронза (до 60%), графит или порошковый кокс. Применяются и композиции с комбинированными наполнителями — стекловолокно (20%) и графит, стекловолокно (15%) и двусернистый молибден (5%). Добавка стекловолокна чрезвычайно увеличивает износоустойчивость фторопласта-4 (в 200 раз), повышая одновременно его твердость и прочность. Графит и кокс также повышают механические свойства фторопласта-4, увеличивая одновременно его теплопроводность. Наибольшее повышение теплопроводности и износоустойчивости достигается при добавке бронзы, но ее нельзя применять при возможности коррозии или образования взрывоопасных соединений с газом. [c.647]

    Размеры рассмотренных участков реологической кривой могут быть самыми различными в зависимости от природы системы и условий, при которых проводят испытания механических свойств (например, температуры). В коагуляционных структурах систем с твердой дисперсной фазой предел упругости растет с увеличением концентрации частиц и межчастичного взаимодействия. В этом же наиравлении уменьшается область текучести. Для материалов, имеющих кристаллизационную структуру, например для керамики и бетонов, характерны большая (по напряжениям) гуковская область деформаций и практическое отсутствие области текучести — раньше наступает разрушение материала (хрупкость). Поэтому им не свойственны ни ползучесть, ни тиксотропия. Для полимеров с конденсационной структурой наиболее типичны релаксационные явления, включая проявление эластичности, пластичности и текучести. Доля Гуковской упругости в них возрастает с ростом содержания кристаллической фазы. Наличие области текучести у полимеров объясняют разрушением первоначальной структуры и возникновением определенного ориентирования макромолекул, надмолекулярных образований и кристаллитов. По окончании такой переориентации наблюдается некоторое упрочнение материала, а затем с ростом напряжения материал разруилается. В какой-то степени промежуточными реологическими свойствами между свойствами керамики и полимеров обладают металлы и сплавы. У них меньше области гуковской упругости (по напряжениям), чем [c.380]

    Антифрикционные, фрикционные, высоконорнстые (фильтровые) конструкционные, магнитные, огнеупорные металлокерамические материалы обладают значительными преимуществами по сравнению с аналогичными компактными материалами. Изделия из металлокерамики обычно не требуют механической -обработки, материал изделия может состоять из компонентов с резко различными свойствами (например, температурой плавления), химический состав металлокерамики по различным компонентам можно регулировать в узких пределах и т. д. [c.202]

    Материалы на основе углерода занимают особое место в различных отраслях народного хозяйства благодаря сочетанию жаропрочности, механической прочности при высоких температурах, химической стойкости в агрессивных средах, фрикционным, антифрикционным, электрическим свойствам. Это единственные в природе вещества, способные увеличивать свою гфочность с возрастанием темнера туры. Сочетание прочности стали с легкостью пластмасс, непревзойденная жаростойкость, биологическая совместимость с живой материей (искусственный клапан сердца, протезы суставов и костей) все это позволяет создавать на основе углеродных материалов уникальные детали сложнейшей конфигурации, область применения которых простирается от медицины до космоса. [c.5]

    Совместной поликонденсацией многоосновных карбоновых кислот с многоатомными спиртами или диаминами, а также совместной поликонденсацней различных оксикислот или аминокислот можно широко варьировать свойства гетероцепных полимерных сложных эфиров и полиамидов. В результате реакций совместной полиэтерификации или полиамидирования, в которых принимают участие различные дикарбоновые кислоты и различные диолы или диамины, изменяется концентрация полярных групп пли регулярность их расположения в макромолекулах полимера, что отражается на его физических и механических свойствах. С понижением концентрации полярных групп в макромолекулах уменьшается количество водородных связей между цепями и, следовательно, снижается температура плавления и твердость полимера, возрастает его упругость и растворимость. Нарушение регулярности чередования метиленовых (или фениленовых) и полярных групп. штрудняет процесс кристаллизации сополимера и снижает степень его кристалличности. Это придает сополимеру большую эластичность, по вызывает уменьшение прочности и теплостойкости изделий из данного полимерного материала. При поликонденсации ш-амино-капроновой кислоты с небольшим постепенно возрастаюш,им количеством АГ-соли (соль гексаметилендиамипа и адипиновой кислоты, или соль 6-6) температура размягчения сополимера плавно снижается. Если в макромолекулах сополимера количество звеньев соли 6-6 достигает 35—50%, температура плавления сополимера снижается до минимума (150° вместо 214—218° для полиами- [c.532]

    Ионообменные смолы, применяемые на практике, обычно представляют собой твердый зернистый материал различного цвета (от желтого до черного), набухающий, но не растворимый в воде, спирте и вообще в той жидкости, в которой идет процесс обменной сорбции. Эти жидкости не должны изменять физико-химические свойства ионитов. Последние должны отличаться большой химической стойко-етью по отношению к многим веществам, в частности к окислителям, даже прн работе в трудных условиях (высокая температура, агрес-гивные среды). Должны обладать достаточной механической прочностью. [c.258]

    Абразивные материалы. Корунд — единственная встречающаяся в природе наиболее устойчивая кристаллическая модификация глинозема (оксид алюминия, А12О3) —в настоящее время редко используется в качестве промышленного абразивного материала. В промышлеиностн применяют преимущественно искусственный корунд. Основным сырьем для получения такого корунда служит высокосортный боксит (гидроксид алюминия), более чистый, чем тот, который применяют для получения алюминия. Искусственный корунд получают следующим образом. Сначала во вращающихся печах из боксита удаляют воду при температуре около 1100°С, а затем иолучают спеченный корунд, сплавляя кальцинированный глинозем при 2000 °С с коксом (чтобы восстановить оксиды железа), железом (чтобы удалить диоксид кремния) и диоксидом титана (добавка для придания ударной вязкости) в электропечи. Далее материал охлаждают, причем скорость охлангдения определяет степень кристалличности получаемого материала. После охлаждения крупные куски корунда (2—3 т) дробят и измельчают в абразивный порошок. Имеются различные виды спеченного корунда, которые отличаются друг от друга по составу, механическим свойствам п ударной вязкости нормальный, с высоки.м содержанием диоксида титана, мелкокристаллический и белый . Свойства некоторых абразивных материалов приведены ниже  [c.228]

    Высокие температуры, прп которых происходит объедипеппе битума с минеральными материалами, и условня погоды и климата, в которых работает битум в дорожном покрытии, вызывают изменения его химического состава и структуры, т. е. старение битума. Под старением понимается вся совокупность необратимых изменений структуры, физических и механических свойств битума, наблюдающихся ири храпении, технологической переработке и эксплуатации. Старение — результат сложных структурных и химических превращений, происходящих в результате воздействия на материал различных факторов, в том числе механических нагрузок [40]. [c.99]

    В книге дано краткое описание ядерных, физических и механических свойств бериллия и его коррозионного поведения в ряде теплоносителей. Рассмотрены условия работы бериллиевых деталей ядерных реакторов различного типа, на основе чего сформулированы основные требоваиия, предъявляемые к материалу. Впервые систематизированы данные о поведении бериллия при облучении в широком диапазоне интегральных доз и температур. Описаны основные процессы и явления, происходящие в материале под воздействием облучения, установлена связь между структурой материала и его свойствами. Подробно рассмотрены некоторые общие закономерности радиационного повреждения бериллия, что позволяет установить предельные условия применимости материала, оценить его работоспособность и дать рекомендации по использованию бериллия в ядерных реакторах. [c.2]

    Сохранение механических свойств изделий из пластмасс при повышении температуры весьма желательно и большинство полиамидов в значительной степени обладают этим свойством. Эту характеристику материала называют теплостойкостью. Измерения теплостойкости производят различными методами, детально описанными в известных стандартах, например ASTM D 648, DIN 53458, VDE 0302/III .  [c.155]

    Так как образование радикалов сопровождается ухудшением свойств материала, оно непосредственно связывается со старением и деструкцией. Долгоживущие сигналы ЭПР отражают эти процессы в ненасыщенных полимерах при действии высоких температур. Исследования с применением метода ЭПР связаны с взаимодействием эластомер -технический углерод. Для наполненного эластомера наблюдается симметричный резонансный сигнал шириной 100-200 Гс, соот-ветствуюодий техническому углероду. Кроме того, узкий сигнал шириной приблизительно 5 Гс при частотах боковых полос относится к образованию свободных радикалов в эластомере за счёт какого-либо процесса старения - механической или окислительной деструкции. Предполагают, что эти радикалы стабилизируются вследствие взаимодействия эластомера с техническим углеродом. Широкие, асимметричные и зависящие от ориентации сигналы приписываются присутствующим парамагнитным примесям. Однако вследствие влияния температуры и состава образца на время жизни различных радикалов, их зависимости от ориентации даже для разных смесей одинакового состава эти сигналы не могут быть строго охарактеризованы. [c.422]

    Безусловно, что в кратком обзоре невозможно охарактеризо- вать все классы неорганических материалов, однако нельзя не сказать о графитовых материалах, которые выделяются исключительно высокой теплопроводностью, превышающей теплопроводность многих металлов и сплавов. Это качество наряду с химической инертностью и термической стойкостью при резких перепадах температур, высокой электрической проводимостью и хорошими механическими свойствами сделали графит и материалы на его основе незаменимыми в различных областях техники и промышленности. В частности, в химической промышленности применение графита особенно эффективно для изготовления теплообменной аппаратуры, эксплуатируемой в агрессивных средах. На ее поверхности в значительно меньшей степени откладываются накипь и загрязнения, чем на поверхности всех других металлических и неметаллических материалов. Сырьем для получения искусственного графита служит нефтяной кокс, к которому добавляют каменноугольный пек, играющий роль вяжущего материала при формовании изделий из графитовой шихты. Сам цикл получения изделий включает измельчение и прокаливание сырья, смешение шихты, прессование, обжиг и графитизацию. Условия обжига тщательно подбирают, чтобы избежать появления механических напряжений и микротрещин. При графитизации обожженных изделий, проводимой при температуре 2800—3000 °С, происходит образование упорядоченной кристаллической структуры из первоначально аморфизованной массы. Чтобы изделиям из графита придать непроницаемость по отношению к газам, их пропитывают полимерами, чаще всего фенолформальдегидными, или кремнийор-ганическими смолами, или полимерами дивинилацетилена. Пропитанный графит химически стоек даже при повышенных температурах. На основе графита и фенолформальдегидных смол в настоящее время получают новые материалы, свойства которых существенно зависят от способа приготовления. Материалы, формируемые при повышенных давлениях и температурах, известны под названием графитопластов, а материалы, получаемые холодным литьем, названы графитолитами. Графитолит, например, применяют не только как конструкционный, но и как футеровочный материал. Он отверждается при температуре 10 °С в течение 10—15 мин, имеет высокую адгезию ко многим материалам, хорошо проводит теплоту и может эксплуатироваться вплоть до 140—150°С. В последнее время разработан метод закрытия пор графита путем отложения в них чистого углерода. Для этого графит обрабатывают углеводородными соединениями при высокой температуре. Образующийся твердый углерод уплотняет графит, а летучие продукты удаляются. Такой графит назван пироуглеродом. [c.153]

    В основе управления процессами структурной приспособляемости лежит регулирование скоростей трибоактивации и пассивации в зависимости от условий работы трущейся пары. Так, в экстремальных условиях при высоких нагрузках, скоростях и температурах необходима низкая склонность материала к активации и высокая пассивирующая способность среды. В умеренных условиях работы высокая пассивирующая способность среды может способствовать более интенсивному износу. Регулировать процессы активации и пассивации можно, используя различные методы упрочнения поверхностей деталей и изменяя физико-химические свойства смазочной среды. Регулируя свойства смазочной ореды, гла вным образом за счет введения присадок, можно обеспечить достаточно быстрое и эффективное пассивирование поверхностей трения и образование на них защитных вторичных структур с высокими механическими свойствами. Смазочная среда является наиболее применимым в практике регулятором, позволяющим получать необходимое равновесие с минимальным уровнем износа при относительно высокой механической и тепловой нагруженности трущейся пары. [c.12]

    Метод синтеза из расплава позволяет получать фторамфиболы различного химического состава в виде монокристальных образований, которые по своей текстуре, морфологическим характеристикам и физико-механическим свойствам не являются асбестами. Работы, направленные на получение монолитных материалов со спутанноволокнистой текстурой, подобных природному нефриту, до настоящего времени также не увенчались успехом. Однако результаты этих исследований представляют интерес для создания стеклокристаллических материалов. Было показано, что при многоступенчатой термической обработке стекол, отвечающих составу фторамфиболов, в области температур 600—950 °С образуется монолитный фарфоровидный материал. Этот материал состоит из разноориентированных короткопризматических кристаллов фторамфибола размером менее 0,1 мкм с небольшими примесями стекла и пироксенов. [c.116]


Смотреть страницы где упоминается термин Механические свойства материалов при различной температуре: [c.206]    [c.83]    [c.142]    [c.372]    [c.288]    [c.96]   
Смотреть главы в:

Расчет и конструирование машин и аппаратов химических производств -> Механические свойства материалов при различной температуре




ПОИСК





Смотрите так же термины и статьи:

Материя свойства

Механические и температура



© 2025 chem21.info Реклама на сайте