Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Штерна теория ионов

    Электрические заряды на коллоидных частицах возникают в результате преимущественной адсорбции одного из ионов электролитов из раствора или диссоциации собственных ионогенных групп. Независимо от механизма возникновения зарядов на коллоидных частицах, при достаточной плотности расположения зарядов, образуется двойной электрический слой, состоящий из зарядов на поверхности и из компенсирующих ионов в растворе при этом, по теории Штерна, компенсирующие ионы частично входят в прилегающий к поверхности адсорбционный слой, а частично — в диффузную часть двойного слоя. Изучение заряда поверхности методом электрокапиллярных кривых (на ртути, V. 4) и кривых титрования (золи AgJ, растворы белков) позволили определить точки нулевого заряда (в белках — изоионную точку, V. 5) и установить их смещение в растворах различных электролитов. [c.132]


    Объяснение влияния сильно адсорбирующихся многовалентных ионов на величину -потенциала можно дать на основе теории Штерна. Эти ионы входят в штерновский слой и, так как при этом они частично компенсируют заряд поверхности, потенциал на границе скольжения сильно понижается. Если количество их в точности равно поверхностному заряду, получается плоский конденсатор толщиной и на расстоянии б потенциал будет равен нулю — поверхность находится в изоэлектрической точке. Если же количество ионов в штерновском слое больше заряда поверхности, она перезаряжается. Тогда диффузный слой будет одноименно заряжен с поверхностью частицы и на границе скольжения -потенциал будет иметь знак, противоположный знаку фо-потенциала, как показано на рис. 36. [c.86]

    Современная теория строения двойного электрического слоя основана на представлениях Штерна. Она объединяет две предыдущие теории. Согласно современной теории слой противо ионо состоит из двух частей (рис. П. 13). Одна часть находится в непосредственной близости к межфазной поверхности и образует слои Гельмгольца (адсорбционный слой) толщиной б не более диаметра гидратированных иоиов, его составляющих. Другая часть противоионов находится за слоем Гельмгольца, в диффузной части (диффузный слой Гуи с потенциалом ф ), толщина I которой может быть значительной и зависит от свойств и состава системы. Потенциал в диффузной части двойного электрического слоя не может зависеть линейно от расстояния, так как ионы в нем распределены неравномерно. В соответствии с принятыми представлениями иотенциал в слое Гельмгольца при увеличении расстояния от слоя потенциалопределяющих ионов сни- [c.54]

    При построении количественной теории Штерн использовал тот факт, что адсорбционные силы резко спадают с расстоянием. Это позволяет предположить, что их роль целиком исчерпывается на расстоянии х = А порядка одного-двух диаметров иона, а при х>А ионы распределены в соответствии с требованием теории Гуи—Чепмена. В таком случае условие электронейтральности системы должно иметь вид [c.153]

    Особенно коагуляционно-активны сильно адсорбирующиеся органические ионы, которые, по теории Штерна, вызывают большое понижение -потенциала. [c.197]

    Современная теория строения двойного электрического слоя во многом исходит из представлений Штерна, допустившего, что в двойном слое следует различать плотную часть, толщина которой принимается равной среднему ионному радиусу электролита, и диффузную часть с постепенно [c.102]


    Согласно Штерну, первый слой или даже несколько первых слоев противоионов притягиваются к стенке под влиянием как электростатических, так и адсорбционных сил. В результате этого часть противоионов удерживается поверхностью на очень близком расстоянии, порядка 1—2 молекул, образуя плоский конденсатор толщиной б, предусмотренный теорией Гельмгольца — Перрена. Этот слой, в котором, естественно, наблюдается резкое падение электрического потенциала, одни авторы называют гельмгольцевским, другие — штерновским, третьи — адсорбционным слоем. Остальные противоионы, нужные для компенсации потенциалопределяющих ионов, в результате теплового разбрасывания образуют диффузную часть двойного слоя, в которой они распределены согласно тем же законам, что и в диффузном слое Гуи — Чэпмена. Эту часть двойного слоя, в которой потенциал падает относительно постепенно, иногда называют сло мХм.и. Схема двойного электрического слоя по Штерну и падение в нем электрического потенциала показаны на рис. vn, 11. [c.185]

    По абсолютной величине заряд о на твердой поверхности, согласно теории Штерна, равен сумме заряда ионов, находящихся в адсорбционном слое и заряда диффузной части двойного слоя ь- [c.187]

    При очень большом адсорбционном потенциале ионы, заряд которых по знаку противоположен заряду дисперсной фазы, могут вызвать перезарядку коллоидных частиц. Это явление было рассмотрено при изложении теории Штерна. [c.192]

    Согласно теории Штерна при отсутствии специфической адсорбции заряд плотного слоя, приходящийся на 1 см , не обращается в нуль. Однако если нет сил специфической адсорбции, то ионы должны находиться в диффузном слое и заряд плотного слоя должен был бы стать равным нулю. [c.420]

    Это внутреннее противоречие теории Штерна для растворов, не содержащих поверхностно-активных ионов, устранил Д. Грэм (1947), введя представление [c.420]

    Двойной слой на границе раствор —металл создается электрическими зарядами, находящимися на металле, и ионами противоположного знака противоионами), ориентированными у поверхности электрода. В формировании ионной обкладки двойного слоя принимают участие как электростатические силы, под влиянием которых противоионы подходят к поверхности электрода, так и силы теплового (молекулярного) движения, в результате действия которых двойной слой приобретает размытое, диффузное строение. Кроме того, в создании двойного электрического слоя на границе металл —раствор существенную роль играет эффект специфической адсорбции поверхностно-активных ионов и молекул, которые могут содержаться в электролите. Теория двойного электрического слоя сложилась на основе работ Гельмгольца, Штерна, А. И. Фрумкина и др. [c.473]

    Согласно теории Штерна, часть противоионов находится в непосредственном соприкосновении с ионами твердой фазы, образуя плотный слой другая часть противоионов составляет диффузный слой. Обычное схематическое изображение распределения этих ионов приведено на рис. 72, б, где, в отличие от 72, а, показаны не все ионы, содержащиеся в растворе, а только избыточные. [c.177]

    Как видно из уравнения (25), величина заряда ионной обкладки двойного слоя, находящейся в жидкости, по теории Штерна состоит из двух слагаемых, из которых одно выражает заряд адсорбированных ионов, а другое — заряд ионов, притянутых к поверхности только электростатическими силами. Как было показано Штерном, рассчитанные по этому уравнению емкости двойного слоя для широкого интервала концентраций электролита из данных по электрокапиллярным кривым дают весьма удовлетворительное совпадение с экспериментом. [c.44]

    Предпосылки теории Штерна можно сформулировать следующим образом. Ионы, компенсирующие заряд поверхности металла, делятся на две части. Одна часть непосредственно примыкает к электроду и образует так называемый плотный или гельмгольцевский слой. Центры этих ионов удалены от поверхности на расстояние их среднего радиуса с1. Заряд этих ионов, приходящийся на 1 м , равен Другая часть ионов участвует в тепловом движении и образует диффузный слой. Центры этих ионов могут находиться на любом расстоянии от поверхности их заряд в расчете на 1 м равен дз. В силу электронейтральности [c.110]

    Проверка теории Штерна была проведена Фрумкиным и Ворсиной, которые предположили, что специфическая адсорбция ионов отсутствует и, следовательно, Ф+=Ф =0. При этом уравнение (23.10) принимает вид [c.112]

    Для устранения противоречия теории Штерна Грэм предположил, что при отсутствии специфической адсорбции ионов qi=0 и, следовательно, [c.114]

    Дальнейшее развитие теория двойного слоя получила в работах Штерна (1924). Согласно адсорбционной теории двойного электрического слоя Штерна часть ионов образует неподвижную гельм-гольцевскую обкладку слоя толщиной, равной среднему радиусу 418 [c.418]


    Чапманом. Такое предпо-ложенне было сделано Штерном (1924) в его адсорбционной теории двойного электрического слоя. Штерн полагал, что определенная часть ионов удерживается вблизи поверхностн раздела металл — электролит, образуя ге./1ьмгольцевскую пли конденсированную обкладку двойного слоя с толщиной, отвечающей среднему радиусу попов электролита. Здесь Штерн следовал принципам, заложенным во втором приближении теории Дебая и Гюккеля. Таким образом, успехи теории растворов в свою очередь содействовали развитию теории двойного электрического слоя иа границе электрол — электролит. Остальные иопы, входящие в состав двойного слоя внутри гел ьм гол ьцеп с ко й обкладки, по ис удерживаемые жестко на поверхности раздета, распределяются диффузно с постепенно убывающей плотностью заряда. Для диффузной части двойного слоя Штерн, так же как и Гуи, пренебрег собственными размерами нонов. Кроме того, Штерн высказал мысль, что в плотной части двойного слоя ионы удерживаются за счет не только [c.267]

    Дальнейшее развитие теории двойного электрического слоя было дано в работах Фрумкина и его школы, Бокриса, Деванатхана, Есина, Мюллера, Парсонса, Эршлера и др. Наибольшее признание и распространение получила модель двойного электрического слоя, предложенная Грэмом (1947). Согласно Грэму, обкладка двойного электрического слоя, находящаяся в растворе, состоит не из двух, как предполагал Штерн, а из трех частей. Первая, считая от поверхности металла, называется внутренней плоскостью Гельмгольца, в ней находятся лишь поверхностно-активные ноны либо если их нет в растворе, молекулы растворителя-. В первом случае заряд плоскости равен <71, во втором — нулю ( 71 = 0), потенциал ее, отнесенный к раствору, обозначается ч( рез г 5). Следующая, удаленная от поверхности металла на расстояние, до которого могут подходить ионы (центры их заряда) в процессе теплового движения, называется внешней плоскостью Гельмгольца ее общий заряд, отнесенный к единице поверхности, равен /2, а потенциал плоскости -фг- [c.271]

    Штерн предложил р ассматривать двойной электрический слой состоящим из двух частей внутренней (плотный слой Гельмгольца) и внешней (диффузный слой). Это позволило использовать теорию Гуи — Чепмена для описания строения внешней части слоя, где можно пренебречь адсорбционными силами и размерами иоиов. Внутреннюю часть Штерн представил как адсорбционный мопоионный слой толщиной не менее двух радиусов ионов (см. рис. 11.13). Введенный Штерном потенциал часто называют штерновским. [c.60]

    Поскольку теория Штерна учитывает наличие плотного адсорбционного слоя ионов, это позволяет выявить влияние их гидрата-цин на qr, а учет специфической адсорбции ионов дает возможность объяснить перезарядку поверхности ири наличии в растворе иротивоиона, обладающего большим адсорбционным потенциалом. Лучше адсорбируются и ближе подходят к поверхности менее гидратированные ионы, которые по этой причине значительнее компенсируют поверхностный потенциал, и их соответственно меньше будет в диффузном слое. [c.61]

    Использование теории Гуи — Чэпмена в ее первоначальной форме пренебрегает такими моментами, как дискретность заряда иона, конечный радиус иона, местная диэлектрическая поляризация среды и т. д. Ясность по этому вопросу внесена Хейдоном (1964) и Снарнейем (1962). Наиболее важное уточнение учитывает специфическую адсорбцию противоинов по теории Штерна последующее уточнение проведено Вервеем и Овербеком (1948). Однако с точки зрения стабильности коллоидов адсорбция Штерна способствует уменьшению эффективного поверхностного потенциала, применяемого для вычисления энергии взаимодействия, которое в любом случае ограничено довольно малыми значениями. [c.98]

    Теория Штерна (рис. 11.11,6) позволяет выделять адсорбционный и диффузный слои с потенциалами фь и возникающими соответственно на расстояниях б и Д от межфазной границы. Диффузный слой обладает теми же свойствами, что и слой Гуи—Чапмена (повышение концентрации электролитов приводит к его сжатию, причем сжимаемость увеличивается с ростом валентности). Это позволило дать четкое определение понятия -потенциала, представляющего собой скачок потенциала на границе адсорбционного и диффузного слоев по сравнению с объемом раствора. Такое определение означает, что под действием внешнего электрического поля перемещаются ионы диффузного [c.56]

    В дальнейшем теория двойного электрического слоя получила свое развитие в работах Штерна (1924), который учел, что ионы меют вполне определенные размеры, и центры их не могут подой- [c.314]

    Теория Штерна. В 1924 г. Штерн предложил схему строения двойного электрического слоя, в которой он объединил схемы Гельмгольца — Перрена и Гуи — Чэпмена. Разрабатывая теорию двойного электрического слоя, Штерн исходил из двух предпосылок. Во-первых, он принял, что ионы имеют конечные, вполне определенные размеры и. следовательно, центры ионов не могут находиться к поверхности твердой фазы ближе, чем на расстоянии ионного радиуса. Вд-втррых, Штерн учел специфическое, не электрическое взаимодействие ионов с поверхностью твердой фазы. Это взаимодействие обусловлено наличием на некотором малом расстоянии от поверхности поля молекулярных (адсорбционных) сил. Как будет показано при обсуждении причин устойчивости и коагуляции коллоидных систем, молекулярные силы, действующие между телами, состоящими из множества молекул, вследствие своей аддитивности являются относительно дальнодействующими. [c.184]

    Значения емкости двойного электрического слоя, вычисленные по теории Штерна с учетом радиусов ионов, оказались близкими к экспериментально найденным, и, таким образом, эта теория преодолела один из недостатков, присущий теории Гуи —Чэпмена. Далее, в отличие от теории Гуи — Чэпмена, теория Штерна может объяснить причину изменения знака электрокинетического потенциала при введении в систему м оговйЛёктньТх ионов, заряд которых противоположен по знаку заряду дисперсной фазы. Такие многовалентные ионы втягиваются в адсорбционный .г.лпй как из-за сильных электростатических взаимодействий, так и из-за большой адсорбируемости, связанной с поляризуемостью таких ионов. Ионы [c.188]

    Из изложенного выше видно, что теория Штерна соответствует результатам экспериментальных наблюдений лучше, чем теория Гуи — Чэпмена. Благодаря уточнению роли размера ионов и введения представления об адсорбционном потенциале, она может объяснить ряд специфических особенностей действия тех или иных электролитов на двойной электрический слой и электрокинетический потенциал. Однако необходимо указать, что и эта теория не является совершенной, поскольку она исходит из ряда допущений и в ней имеется много неопределенностей, например, допущение о независимости адсорбционного пптрнпияля пт кnнттpнтpяпил-Jнтn едва ли вероятно." Следует также заметить, что представления [c.189]

    Детальное рассмотрение теории Гуи показывает, однако, что она не охватывает всей проблемы строения двойного электрического слоя и имеет ряд недостатков. По поводу теории Гуи Штерн в своей статье пищет следующее Вывод уравнения предполагает, что концентрация ионов даже на самой границе раздела столь мала, что для осмотического давления справедливы газовые законы. Это означает, что, например, при 1,0 н. растворе эта формула (уравнение Гуи) применима максимум до разности потенциалов, равной 0,1 в. Вследствие этого ограничения практическая применимость формулы становится почти иллюзорной. Но даже и в этой ограниченной области она не согласуется с опытом, так как дает слишком большие значения для емкости (приблизительно 240 мкф см ). Легко видеть, отчего происходит это отклонение. Большая емкость означает, что заряды, сидящие на отрицательных ионах, находятся очень близко [c.33]

    Если говорить о дальнейшем развитии наших представлений в области строения двойного электрического слоя, то следует указать, что после теорий Гуи и Штерна, каких-либо общих теорий подобного масштаба не появлялось, хотя и были попытки построения отдельных аспектов теории двойного слоя с использованием методов термодинамики необрати-мых процессов и статистики. Предлагались некоторые уточнения картины строения двойного слоя, представленной Штерном. Так, например, Грэм предложил провести подразделе- ние внутренней части двойного слоя для слу- чая, когда имеет место специфическая адсорб- ция наряду с адсорбцией ионов за счет электростатических сил. Такое подразделение приводит к тому, что выделяется отдельно плоскость, проходящая через центры специфически адсорбированных ионов, со значением потенциала и плоскость, проходящая через центры неспецифически адсорбированных ионов, со значением потенциала г зв. Это позволяет уточнить величину поправки на объем ионов, входящих в двойной слой, что не учитывалось классическими теориями. Схема строения двойного электрического слоя, согласно Штерну и Грэму, а именно, его внутренней части (гельмгольцевский слой), приведена на рис. 23. [c.45]

    Аномальные величины С и Х получаются вследствие того, что теория Гуи — Чапмена рассматривает ионы как частицы точечного размера, которые поэтому могут подходить к поверхности электрода на бесконечно малое расстояние. В действительности ионы не могут приблизиться к электроду на расстояние меньше их радиуса. Поэтому теория Гельмгольца, которая рассматривает двойной слой как конденсатор с толщиной, равной радиусу иона, дает более правильные величины емкости, чем теория Гуи — Чапмена. Таким образом, возникла задача сочетания основных представлений теории Гельмгольца и теории Гуи—Чапмена. Эта задача была решена О. Штерном. [c.110]

    Проведем сначала качественное сопоставление выводов, вытекающих из уравнения (23.10), с опытными данными. При этом можно ограничиться рассмотрением явлений специфической адсорбции, когда результаты опыта не могут быть качественно объяснены на основе теории Гуи — Чапмена. В теории Штерна эти явления учитываются при помощи величин Ф+ и Ф . Предположим, что Ф+-=0, а Ф <0, как это наблюдается, например, в растворах К1. При этом согласно уравнению (23.10) д, фо-кривая должна быть несимметричной. Так как лектрокапиллярная кривая получается интегрированием д, Фо-кривой, то соответственно должна быть несимметричной и а,фо-кривая. Таким образом, теория Штерна позволяет объяснить несимметричность электрокапиллярных кривых, вызванную специфической адсорбцией ионов. Особенно наглядно этот вывод проявляется при п. н. 3., где, как следует из уравнения (23.10), фо=гр1. Этот результат означает, что величина фгпотенциала, обусловленная специфической адсорбцией ионов на незаряженной поверхности электрода, равна сдвигу п. н. з. при переходе от раствора поверхностно-неактивного электролита к раствору, содержащему специфически адсорбирующиеся ионы. Распределение потенциала в двойном слое представлено на рис. 60, б. На самом деле из-за дискретного характера специфически адсорбированных ионов распределение потенциала у поверхности незаряженного электрода оказывается иным, нежели это предсказывает теория Штерна. Если принять, что Ф 0, то можно объяснить перезарядку поверхности в присутствии специфически адсорбированных анионов, когда <71 > . Характерное распределение потенциала в двойном (точнее тройном) слое представлено на рис. 60, в. Величины фо и гр здесь имеют разные знаки, что позволяет объяснить положительную адсорбцию катионов при д>0. [c.112]


Смотреть страницы где упоминается термин Штерна теория ионов: [c.228]    [c.269]    [c.269]    [c.102]    [c.56]    [c.95]    [c.186]    [c.420]    [c.421]    [c.41]    [c.114]    [c.114]   
Физическая химия поверхностей (1979) -- [ c.173 ]




ПОИСК





Смотрите так же термины и статьи:

Теория Штерна

Штерна



© 2024 chem21.info Реклама на сайте