Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рутений восстановление

    Способы получения. В лабораториях рутений удобнее всего получить восстановлением цинком трихлорида рутения. Восстановление протекает [c.364]

    Восстановление в присутствии металлов. Известно, что в присутствии никеля, кобальта, меди, платины, палладия и рутения восстановление СОО-группы протекает в более жестких условиях, чем гидрирование двойных углерод-углеродных связей. [c.234]


    Катализатор состоит из чистого металлического рутения, который может быть получен восстановлением двуокиси рутения синтез-газом (С0 Н2=1 2) при 150° и нормальном давлении [83]. [c.131]

    Двуокись рутения легко получают из раствора рутената калия осаждением метанолом. Метод восстановления, который имеет решаю- [c.131]

    Каталитическое восстановление оксидов азота. Проводят 13 присутствии в качестве катализаторов сплавов из металлов платиновой группы (палладий, рутений, платина, родий) или составов, содержащих никель, хром, медь, цинк, ванадий, церий и др. Восстановителями служат водород, оксид углерода, метан п другие углеводороды [c.65]

    В результате этой реакции образуются водород, используемый для гидрирования, и азот — для получения нитридов металлов в восстановительной атмосфере. Безводный аммиак пропускают через трубчатый реактор (рис. 2) при температуре около 600 °С. Обычно процесс ведут при атмосферном давлении или при давлении 25 фунт/дюйм . В качестве катализаторов применяют восстановленные оксиды железа и никеля, а также металлический рутений на активированном угле или а-оксиде алюминия. [c.152]

    Простые вещества. В компактном состоянии рутений — серовато-белый, осмий — серебристо-белый металлы с плотнейшей гексагональной структурой, твердые, хрупкие и тугоплавкие. Химически чистый родий имеет вид светло-серого порошка. Сплавленный, он напоминает алюминий. Дисперсный порошок родия черного цвета называется родиевой чернью. При сплавлении родия с цинком и дальнейшей обработке сплава соляной кислотой получают взрывчатый родий. Причиной взрыва является каталитическое свойство родия взрывать смесь адсорбированных газов (водорода и кислорода). Коллоидальный родий, полученный диспергированием чистого металла в воде или восстановлением из растворов его солей, обладает еш,е большими каталитическими свойствами, чем родиевая чернь. Компактный иридий — серебристо-белый металл, подобно родию имеет структуру гранецентрированного куба, очс иь твердый и хрупкий. Платина и палладий — серовато-белые блестящие мягкие металлы. Платина легко прокатывается и вытягивается в проволоку, палладий поддается ковке, обладает большей вязкостью, чем платина. [c.403]

    Рутений катализирует реакцию восстановления хлоридом олова. Для раствора, содержащего разные количества рутения, были поручены следующие значения оптической плотности раствора роданида железа во времени  [c.234]


    Физические свойства. Рутений в порошке — металл темно-синего цвета, сплавленный же по виду напоминает платину. Он обладает высокой твердостью, но настолько хрупок, что легко дробится в порошок. Мелко раздробленный рутений обладает каталитическими свойствами. Коллоидный рутений получается восстановлением его солей. При растворении сплава рутения с цинком в соляной кислоте получается взрывчатая его модификация, переходящая после взрыва в более устойчивую модификацию. [c.364]

    Пиридин гидрируется при температуре 25 °С и небольшом давлении водорода на платине, родии и палладии в кислых средах, лучше всего в уксусной кислоте (см. 1.5). При восстановлении на скелетном никеле необходима несколько более высокая температура, чем для бензола. Эту реакцию, как и гидрирование на другом пригодном для этой цели катализаторе - хромите меди, нельзя проводить в спиртовом растворе из-за возможного N-алкилирования продукта. Более эффективно и не осложнено алкилированием гидрирование пиридина на оксиде рутения  [c.58]

    Легирование титана небольшими количествами палладия или рутения, для которых характерны высокие скорости восстановления водорода, позволяет перевести металл в пассивное состояние в растворах кислот—неокислителей. Способ был предложен Н. Д. Томашовым и нашел широкое применение в практике [c.46]

    Тетрафториды рутения, осмия и иридия наиболее удобно получать восстановлением их высших фторидов. Однако в случае родия и платины, переход которых в высшие окислительные состояния требует особых условий, не составляет трудности получать эти тетрафториды прямым окислительным фторированием. [c.405]

    Весовые методы определения рутения основаны на выделении из растворов его малорастворимых соединений гидрата скиси [63—65], сульфида [12], комплексных -чединений с серусодержащими лигандами, такими как тионалид [66], тиомочевина [17], пригодными для выделения весьма малых количеств металла. Определение рутения восстановлением цинком или магнием [67, 68] не дает точных результатов, но может быть использовано в особых условиях [69]. [c.125]

    Это подтверждается и результатом восстановления остатков, полученных в обоих случаях. Причем установлено, что восстановление двуокиси рутения на окиси алюминия происходит при более низких температурах (110—160°), чем восстановление чистой двуокиси рутения (260°). В то же время окись алюминия не оказывает существенного влияния на температуру восстановления гидроксихлорида рутения восстановление в водороде как чистой соли, так и нанесенной на окись алюминия происходит при одинаковых температурах 120—180°. [c.22]

    Анодное окисление и катодное восстановление примесей, содержащихся в сточных водах, осуществляется электролизом сточных вод с использованием электролитически нерастворимых анодных материалов (угля, магнетита, диоксидов свинца, марганца или рутения, нанесенных на титановую основу). Для повышения электропроводности сточных вод, снижения расхода электроэнергии и интенсификации процессов окисления в воду вводят неорганические соединения. При очистке воды от цианидов вводят 5—10 г/л Na l. Степень окисления цианидов достигает 100 % при расходе электроэнергии 0,2 кВт-ч/г N-. [c.495]

    Каталитическое гидрирование в паровой фазе при атмосферном давлении над восстановленным никелем было открыто Сабатье Вскоре В. Н. Ипатьев впервые применил гидрирование в жидкой фазе под давлением водорода. За почти семидесятилетний период развития и изучеааия реакций гидрирования было открыто много весьма активных катализаторов позволявших работать при очень мягких условиях никелевые катализаторы на носителях, хромит-медные катализаторы, окись платины, платиновая чернь и др. Большое значение, в том числе и промышленное, получили так называемые скелетные никелевые катализаторы ( никель Ренея ) . К настоящему времени ряд катализаторов значительно пополнен, а известные катализаторы усовершенствованы. Так, например, очень активными катализаторами являются сплавы никеля и родия, платины и рутения, модифицированные катионами палладиевые катализаторы и др. Скелетные катализаторы значительно улучшены промотированием , а приготовление катализаторов усовершенствовано так, что платиновая чернь, например, может быть получена с хГоверхностью до 200 м /г, в то время как в прошлом лучшие образцы имели поверхность не более 50—60 м г. [c.130]

    Для реактора периодического действия с перемешиванием можно использовать никель Ренея, кобальт Ренея, предварительно восстановленный никель на кизельгуре или рутений на угле. Условия проведения реакции температура 150-250°С, давление 35-150 атм, концентрация катализатора 0,1-1,0%. Температуры выше 250°С вызывают дезаминирование с образованием циклогексана. [c.217]

    В таких случаях в процессе окислительно-восстановительного взаимодействия рацемизация оптически активного антипода может и не происходить. Это было показано для [Ри (о-рЬеп)зР+. /-Форма соединения двухвалентного рутения с орто-фенатро-лином отличается довольно большой величиной вращения (—1818°), которое в результате окисления нитратом церия довольно резко падает [М]в = —568 для /-[Ки(о-р11еп)зР+). Однако после восстановления сульфатом железа (И) величина вращения опять достигает характерной для /-[Ри(о-рЬеп)зР+ величины. Аналогичные соотношения наблюдаются для некоторых других соединений. [c.67]


    Металлический рутений может быть получен восстановлением водородом при нагревании Ки04, (КН4)з[РиС1в] и других его соединений. [c.402]

    Катализаторы, нерастворимые в реакционной среде гетерогенные катализаторы). Это традиционно используемый тип катализаторов. Среди них наиболее эффективны никель Ренея [190], палладий на угле (ио-видимому, это наиболее широко распространенный катализатор), боргидрид натрия — восстановленный никель (называемый также боридом никеля), металлическая платина или ее оксид, родий, рутений, NaH— —RONa—Ni (ОАс)г [192] и оксид цинка 193]. [c.176]

    Дихлорид рутения (И) получается восстановлением сероводородом раствора трихлорида рутения (III). Последний может быть получен действием хлора на металлический рутений. Получено комплексное соединение с хлором, в котором рутений четырехвалентен Ка [НиС1в]. [c.364]

    Наиболее стабильным для рутения является оксид КиОг черного цвета, который образуется при окислении металла в кислороде (600°С). Оксид такого же состава известен и для осмия. Он образуется при осторожном восстановлении ОзО . ОзОз диспропорционирует 20802 = Оя + О8О4, а ШЮг при высоких температурах диссоциирует с отщеплением кислорода. Оксиды ОяО и КиОг нераст- [c.497]

    Для восстановления карбонильных соединений в спирты пригодны все металлические катализаторы. Наиболее эффективны платина и активные сорта скелетного никеля. На этих катализаторах, а также на родии и рутении большинство альдегидов и кетонов гидрируется при температуре 25 °С и давлении 1-4 атм. С менее активными разновидностями никеля Ренея достаточная скорость восстановления достигается при температурах до 100-125 °С и давлениях до 100 атм  [c.59]

    Чтобы восстановление карбонильной группы на оксиде платины было полным, рекомендуется промотировать катализатор небольшим количеством хлорида или сульфата железа(П) При гидрировании алифатических альдегидов на недостаточно отмытом от щелочи скелетном никеле интенсифицируются побочные реакции конденсации вместе с тем щелочь активирует этот катализатор. Рутений применим для восстановления в водных растворах. Палладий весьма активен при гидрированиии ароматических, но не очень эффективен при гидрировании алифатических и алицикли-ческих карбонильных соединений  [c.59]

    Действие водорода на карбоновые кислоты и их производные в присутствии катализаторов обычпо ведет к образоСЕиию первичных спиртов Для этой цели пригодны хромитиые катализаторы, которые действуют довольно избирательно, главным образом па карбоксильную группу [205, 215, 401, 402] Однако часто, особенно при восстановлении низших жирных кнслот, образуются углеводороды, эфиры восстанавливаемых кислот и образующихся спиртов [407] Свободные кнслоты хорощо гидрируются над окисью рутения [404]. Сложные эфиры а-окси- н а-аминокнслот при мягких условиях реакции в присутствии инкеля Реиея образуют окси- или амино-спнрты с выходом около 75% [205, 405] Восстановление [c.338]

    Для восстановления нитросоединений до аминов применяют и другие восстановители, такие, как гидросульфит натрия (N328204) [231, сульфат железа(П) и концентрированный водный аммиак 124, цинк в воде 125], цинк и едкий натр в водно-спиртовом-растворе 126], сульфид аммония [27], гидразин в присутствии палладия на угле [28] или в присутствии ннкеля, платины или рутения [29] и фенилгидразин без катализатора, по прн высокой температуре 130. Для получения аминов из нитросоединений можно также применять метод Вольфа — Кижнера [31]. Для восстановления одной или двух нитрогруин в бензольном кольце применяют сульфид натрия и хлористый аммоний [32], сероводород и концентрированный водный аммиак [33], сернистый натрий и серу [34]. Однако несимметричные динитробензолы восстанавливаются не всегда спе- [c.472]

    Платиновая чернь — тонкий порошок платины, который получают восстановлением ее соединений. Применяют как катализатор в химических процессах. Ллатииовые металлы — рутений (Ru), родий (Rh), палладий (Pd) — легкие платиновые металлы осмий (Os), иридий (Ir), платина (Pt) — тяжелые платиновые металлы. В природе встречаются вместе с платиной. Все эти элементы стойки к химическим реагентам. [c.102]

    Таким образом, для каталитического восстановления пиридиииевых солей и их конденсированных производных, содержащих гидроксиалкильные заместители при атоме азота, могут быть использованы различные катализаторы - оксид и диоксид платины, палладий на угле, никель скелетный, никель модифицированный рутением. В реакцию с одинаковым успехом вводились различные соли хлориды [40], бромиды [41], иодиды, тозилаты, перхлораты [42], тетрафторбораты [44]. Этот метод позволяет осуществить стереонаправленный синтез М-гидрокси-алкилпипиридинов, недоступных через каталитическое алканоламинирования [c.72]

    В качестве анодов используют различные электролитически нерастворимые материалы графит, магнетит, диоксиды свинца, марганца и рутения, которые наносят на титановую основу. Катоды изготовляют из молибдена, сплава вольфрама с железом или никелем, из графита, нержавеющей стали и других металлов, покрытых молибденом, вoльфpa юм или их сплавами. Процесс проводят в электролизерах с диафрагмой и без нее. Кроме основных процессов электроокисления и восстановления, одновременно могут протекать электрофлотация, электрофорез и электрокоагуляция. [c.96]

    Если в качестве МИА применять платинотитановые электроды, слой платины легко смывается с поверхности анода даже при кратковременных случайных коротких замыканиях. Поэтому попытки использования ПТА в электролизерах с ртутным катодом не дали ожидаемых положительных результатов. Для предотвращения выхода из строя ПТА при случайных коротких замыканиях приходилось увеличивать межэлектродное расстояние, что приводило к повышению напряжения и соответственно возрастанию yдe lьнoгo расхода электроэнергии по сравнению с графитовыми анодами. При установке окиснорутениевых анодов также надо предотвращать возникновение коротких замыканий, однако восстановление окислов рутения, образующих активный слой МИА, амальгамой натрия происходит не мгновенно, и, по литературным данным [53, 54], окиснорутениевые аноды могут находиться в контакте с амальгамой натрия в течение 20 с без опасности их повреждения. [c.187]


Смотреть страницы где упоминается термин Рутений восстановление: [c.693]    [c.100]    [c.243]    [c.91]    [c.417]    [c.418]    [c.419]    [c.496]    [c.74]    [c.308]    [c.20]    [c.126]    [c.231]    [c.1303]    [c.2186]    [c.303]    [c.383]    [c.67]    [c.407]    [c.407]   
Структура металических катализов (1978) -- [ c.207 ]

Методы элементоорганической химии Кн 2 (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Рутений

Рутений рутений



© 2025 chem21.info Реклама на сайте