Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Флуоресценция аминов

    В другой работе [111] отмечено, что образование радикалов при фотолизе растворов дифениламина, трифениламина и карбазола в этаноле в одинаковой мере снижает как фосфоресценцию, так и флуоресценцию амина. Таким образом, радикал дезактивирует синглетное возбужденное состояние амина. В этой же работе было исследовано тушение фосфоресценции аминов при у-радио-лизе этих растворов. Концентрация радикалов, вызывающая одинаковое тушение (па 30%), в случае радиолиза оказалась в 20 раз больше, чем в случае фотолиза. Это различие объясняется тем, что при фотолизе радикалы образуются в непосредственной близости от молекул амина, тогда как в случае радиолиза они образуются в среднем на значительно больших расстояниях. Если предположить, что радикалы совершенно беспорядочно расположены относительно молекул амина, то расчет по формуле Перрена дает для радиуса сферы взаимодействия значения 34, 30 и 36 А соответственно для дифениламина, трифениламина и карбазола. Эти радиусы соответствуют индуктивно-резонансному механизму тушения. Однако расчет по теоретической формуле (24) дает для дифениламина Лд = 11,5 А и еще меньшие значения для трифениламина и карбазола Это расхождение возможно объясняется тем, что локальная концентрация радикалов в окрестностях молекулы амина значительно больше, чем это следует из предположения о беспорядочном расположении. Механизм концентрирования радикалов около молекул амина в случае радиолиза неясен. [c.32]


    Возможен также перенос заряда ионизированной молекулой к другой молекуле с более низким потенциалом-ионизации. Таким образом, для смесей может быть характерна определенная избира-. тельность реакций. Кроме многих предложенных механизмов реакции, есть процессы, при которых возбужденные молекулы беч распада теряют свою избыточную энергию. Хорошо известна флуоресценция — превращение молекулярной энергии в видимое излучение Известен также процесс гашения — постепенное рассеивание энергии путем ее передачи ближайшим молекулам при столкновениях, происходящих в результате теплового движения или каким-либо другим путем. На этих процессах переноса энергии основан механизм защиты от излучения, благодаря которой влияние излучения на чувствительные материалы может быть уменьшено. Другой метод, усиливающий такую защиту, основан на изучении реакций радикалов, часть которых может проходить через многие стадии цепного механизма, например, реакции (2) и (4), Если имеются компоненты, склонные вступать в реакцию со свободными радикалами, то интенсивность излучения может быть уменьшена. К таким акцепторам радикалов относятся иод, ненасыщенные соединения, окиси азота, амины и кислород. [c.159]

    Флуоресценцией обладают ароматические органические соединения (углеводороды, фенолы, амины). Как правило, ароматические нитросоединения не флуоресцируют, большинство ароматических кислот также не флуоресцирует. [c.57]

    Рассмотрим определение концентрации 2-нафтола и 2-нафтил-амина в смеси в водном растворе. Поскольку в возбужденном состоянии 2-нафтол становится более сильной кислотой, то в спектре флуоресценции его в водном растворе имеются две полосы 1) Ямакс = 360 нм соответствует неионизированной форме 2-нафтола 2) Хмакс = 425 нм соответствует ионизированной форме 2-нафтола 2-нафтиламин в возбужденном состоянии является очень слабой кислотой, поэтому в спектре флуоресценции присутствует только полоса с Ямакс = 415 нм, принадлежащая неионизированной форме. [c.83]

    Определение констант тушения триплетных состояний. Изучение констант тушения триплетных состояний удобно проводить в вязких растворах. При температурах, близких к комнатной, могут быть использованы растворы 1-бромнафталина в глицерине или полиэтиленгликоле. При низких температурах выбор растворителя более широкий. В качестве тушителя применяют соединения с тяжелыми атомами, кислород, парамагнитные стабильные радикалы, доноры электронов или атомов водорода. Весьма удобным объектом исследования являются соли уранила, флуоресценция которых тушится аминами, спиртами, анионами галогенов и многими другими соединениями. Чтобы выяснить статический или динамический характер тушения, необходимо провести параллельное исследование кинетики и интенсивности фосфоресценции в одних и тех же растворах и определить константы тушения, представив данные в координатах Штерна — Фольмера <ро/ср—[Q] и to/t—[Q]. [c.115]


    Облучение ароматических углеводородов в присутствии алифатических или ароматических аминов приводит к появлению в спектре флуоресценции углеводорода новой [c.68]

    Взаимод Д с цианурхлоридом и послед заменой атомов С1 на остатки к -л аминов (R и R) или с 2 молями фенилизоцианата получают соединения (соотв III и IV), обладающие флуоресценцией, их применяют как оптич отбеливатели [c.45]

    Непрямая флуоресценция 10- -10 Спирты, амины, анионы, катионы, сахара Известно только немного приложений [c.43]

    Флуоресценция вызывается присутствием ароматических побочных продуктов реакции, которые, однако, при тщательной работе можно полностью удалить. Чистый йс-тетрагидро-р-нафтил-амин не дает окраски с диазобензолсульфокислотой. [c.376]

    В результате реакции первичного амина с флуорескамином (см. разд. Аминокислоты ) образуются соединения, дающие пятна с сильной флуоресценцией в УФ-свете (чувствительность 1 нмоль). [c.382]

    Амино-4-окси- антрахинон Щелочный раствор Красная флуоресценция в ультрафиолетовом свете Ы, N3, Ре, Сг [244,248] [c.39]

    Синтез соединения XXV описан выше (стр. 483). Амины ряда бензо[ ]хино-лина характеризуются флуоресценцией растворов и глубокой желтой окраской солей. [c.492]

    Определить концентрацию раздельно 2-нафтола и 2-нафтила-мина в смеси трудно. Иное получается в щелочном растворе. В 2 н. ЫаОН все молекулы 2-нафтола уже в основном электронном состоянии существуют в ионизированной форме. Поэтому спектр флуоресценции содержит одну полосу с Хмакс = 425 нм. 2-Нафтил-амин в основном состоянии присутствует в щелочном растворе в виде пепонизированпой формы. В возбужденном состоянии благодаря усилению кислотных свойств все молекулы 2-нафтиламина существуют в ионизированной форме  [c.83]

    Такого рода замедленная флуоресценция обнаружена в замороженных растворах ароматических аминов, фенолов и ряда красителей. Рекомбинационная замедленная флуоресценция характеризуется сложным, иеэкспонепциальным затуханием и сравггитсльио большой продолжительиост1)Ю (до сотен секунд). [c.100]

    Гидрокси- и амино-К. к.-орг. люминофоры нз них нанб. важны родамины С, Ж, 6Ж. Флуоресцеин, его галоген-замешенные и родамины-флуор>есцентные индикаторы в отлнчие от цветных индикаторов нх можно использовать в окрашенных и мутных средах прн осадительном, комплексонометрич., окислит.-восстановит. и кислотно-основном титрованиях. Широко применяют флуоресцеин и эозин как адсорбц. индикаторы для аргентометрич. определений СГ, Вг, 1 , S N , N (тушение соотв. зеленой и краснофиолетовой флуоресценции в конце титрования) и как кислотно-основные индикаторы (соотв. при pH 3,4-4,1 и 1-3 появление зеленой флуоресценции). [c.546]

    Например, лазерный краситель, представляющий собой производное 7-амино-4-(1>торметилкумарина в ацетонитрилс максимально поглощает при 418 нм, а в воде - при 4Я0 нм, сто флуоресценции в ацсгонитрилс равна 521 нм, а в воде - 549 нм [345]. [c.356]

    И (1.82) 15001. Смесь (1.81, а) и Р-меркаптоэтанола является известным и широко используемым в биохимии реагентом для спектрофлуо-риметрического определения аминокислот и белков [127, 177, 180,321]. Сделано предположение, что флуоресцирующие продукты реакции данного реагента с К-концом аминокислот и протеинов представляют собой 1-алкилтио-2-алкилзамещенные изоиндолины. В доказательство этой гипотезы проведены эксперименты по конденсации (1.81, с) с н-пропиламином в присутствии этилмеркаптана, р-меркаптоэтанола [594—5971, 1,2-этандитиола [594], причем лишь в случае трет-бутл-меркаптана и этандитиола выделены в аналитически чистом виде и охарактеризованы изоиндолы (1.83). С помощью УФ, ЯМР и масс-спектров исследовано образование 1-ал кил (арил )тио-2-алкилйзои идолов в спиртовых растворах [594—5971. Продукты конденсации аминов с реагентом (смесь (1.81, а) с меркаптосоединениями) имеют сильную флуоресценцию, что в общем подтверждает высказанную выше гипотезу [597]. [c.24]

    Фурокумарины представляют собой, как правило, бесцветные кристаллические вещества, которые сохраняют свойства кумарино-вой системы. Например, под действием УФ-света они проявляют флуоресценцию, нерастворимы в водных растворах кислот. Фурокумарины легко растворяются в теплых водных растворах щелочей вследствие раскрытия лактонного цикла последующая нейтрализация водным раствором кислоты приводит к легкой релактониза-цни, хотя, как будет показано ниже, при этом иногда наблюдаются скелетные перегруппировки. При обработке щелочью в присутствии 8-амино-5-гидроксифуро[3, 2 6,7]хромона фурокумарины приобретают глубокую фиолетовую окраску, благодаря чему их можно легко отличить от фурохромонов, которые не дают эту цветную реакцию [5]. [c.179]

    Визуальное наблюдение в коротковолновом (2S3 нм) и длинноволновом (366 нм) УФ-свете. К флуоресцирующим аминам относятся кинуренин (светло-голубая флуоресценция) о-аминоаце-тофенон (светло-голубая) 3-гидроксикинуренин (зеленая) антраниловая кислота (пурпурная) аминосалициловая кислота (синяя) ксантоптерин (желто-зеленая) многие антибиотики и алкалоиды. [c.382]

    Реакция Кенига. Бумажную хроматограмму подвешивают в закрытом сосуде над кристаллами бромоциана и выдерживают в течение 30- 60 мин. Гидразид изоникотиновой кислоты, гидразид никотиновой кислоты и гидразид изопропилизоникотиновой кислоты дают специфическую синюю флуоресценцию в УФ-свете. После обработки бромоцианом хроматограмму опрыскивают одним из растворов ароматического амина  [c.424]


    Амино-4-трифторкумарин, его соли с аминокислотами и пептидами применяются в качестве флуоресцентного маркера аминокислот и пептидов для биологических исследований [6]. Производные 1,8-нафтиридина, 1,2-ди-гидропиридо[2,3-Ь][1,8]-нафтиридина обладают стабильной флуоресценцией в области 393-482 нм в этаноле [6]. 2-Кето-4-трифторметил-1,6,6,7,8-пентаме-тил-6,7-дигидро-1Н,2Н,8Н-пиридо[3,2-Г индол является источником сине-го-лубого лазерного излучения [9]. [c.295]

    Соединения типа акридина. Акридин и ею производные имеют наибольшее значение по сравнению с соединениями других степеней окисления. Они характеризуются высокой степенью сопряжения двойных связей, химической устойчивостью и являются типичными ароматическими соединениями температура плавления большинства акридинов находится в пределах от 100 до 300°. Они легко кристаллизуются и дают хорошо образованные и так же легко кристаллизующиеся соли. Большинство этих соединений окрашено в кремовый или желтый цвет, но известны также красные и фиолетовые вещества и небольшое количество голубых и зеленых. Большинство из них сильно флуоресцирует в дневном или в ультрафиолетовом свете, выделенном при помощи фильтров (линия ртути 3650 Д.). Флуоресценция характерна больше для оснований, чем для солей. Хемилюминесценция наблюдается только у диакридилов. Акридин, некоторые монометилакридины и нитрохлор акридины, а также небольшое число других производных (главным образом 5-хлор-, 1-нитро-, 4-амино- и 1- и 2-ацетами-доакридины, но не их изомеры) раздражают слизистые оболочки носа и глаз. Эти явления носят временный характер и их легко можно избежать. [c.374]

    Известно небольшое число линейных бензакридинов они представлены в табл. 6. Эти соединения значительно труднее растворимы, чем их ангуляр- ные изомеры (вследствие более высокой ассоциации), и поглощают свет в области больших длин волн. Незамещенный 2,3-бензакридин—оранжевого цвета, растворы его обладают зеленой флуоресценцией, раствор хлоргидрата окрашен в пурпурный цвет. 5-Амино-2,3-бензакридин имеет красный цвет, так же как и его соли, которые на дневном свету быстро димеризуются в желтое вещество 6,7,8,9-тетрагидропроизводное 5-амино-2,3-бензакридина, окрашенное в желтый цвет, на свету димеризуется с образованием белого соединения [135]. 7-Амино-2,3-бензакридин—красного цвета растворы его солей с одним эквивалентом кислоты имеют в зависимости от природы растворителя красный или зеленый цвет (полагают, что зеленая форма неассоциирована). Если соли образованы с двумя эквивалентами кислоты, то растворы их имеют только красный цвет. В тех синтезах, где возможно образование обоих изомеров— линейного и ангулярного, обычно получается только ангулярное соединение. [c.413]

    Если аминогруппа в замешенном акридине находится в парафиновой боковой цепи, то независимо от удаленности от ядра электронное взаимодействие между этой группой и акридиновым кольцом почти полностью прекрашается. Это явление хорошо наблюдать на примере ш-амино-З-метилакридина (LXI), в котором первый протон связывается аминогруппой без изменения окраски или флуоресценции. Значение р/Скисл.(9,2) такое же, как у алифатического амина. В более кислых растворах второй протон связывается кольцевым атомом азота, и только тогда спектр и флуоресценция начинают напоминать таковые для катиона акридина. [c.415]

    Было обнаружено, что нингидрин может образовывать сильно флуоресцирующие продукты с соединениями, содержащими аминогруппу [70, 71]. Чувствительность метода, основанного на измерении флуоресценции, выше в 10—100 раз. Фенилаланин в реакции с нингидрином образует фенилацетальдегид, который реагирует с избыточным нингидрином и первичным амином, образуя сильно флуоресцирующий продукт. Было установлено строение этого продукта [72] и на основе этого исследования был синтезирован новый реагент [73]. Это 4-фенилспиро [фуран-2(ЗН), Г-фталан]ДИОН-3,3, получивший название флуорескамина, зеагирует с первичными аминами непосредственно, образуя такие же флуоресцирующие соединения (возбуждение при 390 нм, излучение при 475 нм), как и при реакции нингидрина с фенилаце- [c.486]

    Под действием галогенирующих реагентов вторичные аминокислоты подвергаются окислительному декарбоксилированию с образованием иминов, которые гидролизуются в первичные амины. Таким образом, с помощью флуорескамина можно определять и вторичные аминокислоты [75]. В качестве галогенирую-щего агента для пролина служил N-хлорсукцинимид аликвотную часть 1,0 мл 4 10 — 4 10 М раствора пролина или соответственно гидроксипролина смешивали при pH = 2 с 1 мл 4-10 М водного раствора хлорсукцинимида, 1 мл 2%-ного раствора бикарбоната натрия и 1 мл 2 10 М раствора флуорескамина в ацетоне. Интенсивность флуоресценции измеряли через 2 мин после введения флуорескамина. Для производных саркозина оптимальная флуоресценция получается при использовании бромной воды (2-10- М) вместо хлорсукцинимида. [c.489]


Смотреть страницы где упоминается термин Флуоресценция аминов: [c.131]    [c.79]    [c.405]    [c.139]    [c.27]    [c.24]    [c.463]    [c.465]    [c.59]    [c.606]    [c.383]    [c.46]    [c.449]   
Водородная связь (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Флуоресценция



© 2025 chem21.info Реклама на сайте