Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Трансаминазы

Рис. 12.4. Центральная роль трансаминаз L-аминокислот и глутаматдегидрогеназы в биосинтезе и распаде аминокислот в тканях животных. Рис. 12.4. Центральная роль трансаминаз L-аминокислот и <a href="/info/98743">глутаматдегидрогеназы</a> в биосинтезе и распаде аминокислот в тканях животных.

    Набор для определения активности трансаминаз в крови [c.580]

    Биохимическое переаминирование — важнейшая реакция переноса группы в аминокислотном обмене. Она катализируется аминотрансферазами (трансаминазами), коферментом является пиридоксальфосфат, который принимает участие в обмене аминогрупп, образуя шиффовы основания в качестве промежуточной ступени. [c.70]

    Роль трансаминаз и реакций трансаминирования в обмене аминокислот. Чрезвычайно широкое распространение трансаминаз в животных тканях, у микроорганизмов и растений, их высокая резистентность к физическим, химическим и биологическим воздействиям, абсолютная стереохимическая специфичность по отношению к Ь-аминокислотам, а также высокая каталитическая активность в процессах трансаминирования послужили предметом детального исследования роли этих ферментов в обмене аминокислот. Ранее было указано, что при физиологических значениях pH среды активность оксидазы Ь-аминокислот резко снижена. Учитывая это обстоятельство, а также высокую скорость протекания реакции трансаминирования, А.Е. Браунштейн выдвинул гипотезу о возможности существования в животных тканях непрямого пути дезаминирования аминокислот через реакции трансаминирования, названного им трансдезаминированием. Основой для вьщвижения этой гипотезы послужили также данные Г. Эйлера о том, что в животных тканях из всех природных аминокислот с высокой скоростью дезаминируется только Е-глутаминовая кислота в реакции, катализируемой высокоактивной и специфической глутамат-дегидрогеназой. [c.437]

    Трансферазы Перенос групп А-В + С -4 А + В-С Киназы (перенос фосфатных групп), трансаминазы (перенос аминогрупп) [c.28]

    Более подробно механизм действия трансаминаз представлен на рис. 12.3. [c.436]

    Биологическое действие. Специфич. ф-ция водорастворимых В. (кроме аскорбиновой к-ты) в организме-образование коферментов и простетич. групп ферментов. Так, тиамин в форме тиаминдифосфата-кофермент пируватдегид-рогеназы, а-кетоглутаратдегидрогеназы и транскетолазы витамин Bg-предшественник пиридоксальфосфата (кофер-меита трансаминаз и др. ферментов азотистого обмена). Связанные с разл. В. ферменты принимают участие во мн. важнейших процессах обмена в-в энергетич. обмене (тиамин, рибофлавин, витамин РР), биосинтезе и превращениях аминокислот (витамин В , В 2), жирных к-т (пантотеновая к-та), пуриновых и пиримидиновых оснований (фолацин), образовании мн. физиологически важных соед.-ацетилхолина, стероидов и т.п. [c.388]


    Таким образом, трансаминазы катализируют опосредованное через глутаматдегидрогеназу дезаминирование природных аминокислот (черные стрелки) и биосинтез аминокислот (красные стрелки). В более упрощенной форме роль этих ключевых ферментов азотистого обмена представлена на рис. 12.4. [c.438]

    Пиридоксаль (П) и пиридоксамин (И1) являются биокатализаторами, находясь в виде простетической группы (кодекарбоксилазы) в составе ами-нофераз (трансаминаз), декарбоксилаз и других ферментов, принимающих участие в синтезе и расщеплении аминокислот. Пиридоксол (I) рассматривают как провитамин, так как он проявляет свои витаминные свойства не непосредственно, а превращаясь в организме в пиридоксаль или пиридоксамин. [c.662]

    Переаминирование сводится к взаимопревращению аминогрупп и карбонильных групп под действием ферментов трансаминаз, называемых также аминотрансферазами. Эта реакция служит не только для разрушения аминокислот, но и для их биосинтеза. Так, например, аспартат-а-кетоглутарат-трансаминаза катализирует взаимопревращение аспарагиновой и а-кето-глутаровой кислот в щавелевоуксусную и глутамиЕювую кислоты. Механизм реакции этого типа был описан в гл. 17. [c.397]

    Наиб, интенсивно в 70-х гг, развивались синтез олигонуклеотидов и генов исследования клеточных мембран и полисахаридов анализ первичной и пространста структур белков. В кач-ве примера можно указать на успешное изучение структуры важных ферментов (трансаминаза, Р-га-лактозидаза, ДНК-зависимая РНК-полимераза), защитных белков (у-глобулины, интерфероны), мембранных белков (аденозинтрифосфатазы, бактериородопснн). Большое значение приобрели работы по изучению строения и механизма действия пептидов-регуляторов нервной деятельности (т, наз. нейропептиды). [c.288]

    Механизм реакции трансаминирования. Общую теорию механизма ферментативного трансаминирования разработали советские ученые А.Е. Браунштейн и М.М. Шемякин. Одновременно подобный механизм был предложен американскими биохимиками Э. Снеллом и Д. Метцлером. Все трансаминазы (как и декарбоксилазы аминокислот) содержат один и тот же кофермент-пиридоксальфосфат. Для реакций трансаминирования характерен общий механизм. Специфичность трансаминаз обеспечивается белковым компонентом. Ферменты трансаминирования катализируют перенос ЫН,-группы не на а-кетокислоту, а сначала на кофермент пиридоксальфосфат. Образовавшееся промежуточное соединение (шиффово основание) подвергается внутримолекулярным превращениям (лабилизация а-водо-родного атома, перераспределение энергии связи), приводящим к освобождению а-кетокислоты и пиридоксаминфосфата последний на второй [c.435]

    Нанб. роль П. играет в биохимии в процессах метаболизма азотистых оснований в тканях животных и растений- Заключается в переносе аминогруппы от молекулы а-аминокнсло-ты в молекулу а-кетокислоты, как правило с участием ферментов-аминотраисфераз (трансаминаз), aaiip. во р-ции  [c.472]

    Аланин образуется также при переаминировании глутаминовой кислоты в присутствии трансаминазы (реакции, открытые [c.169]

    Трансаминазы играют в метаболизме аминокислот чрезвычайно важную роль в настоящее время известно более 50 различных ферментов этого класса [33]. Наиболее изученный из них — это цитоплазматическая аспартатаминотрансфераза из сердечной мышцы свиньи — димерный фермент, состоящий из субъединиц с мол. весом 46 344 (рис. 2-1). [c.217]

    Пиридоксальфосфат идеально приспособлен для катализа реакции аминосоединений. Поэтому его обнаружение в роли необходимого кофактора гликогенфосфорилазы (гл. 7 разд. В, 5) вызвало удивление. Кофермент связан с фосфорилазой в основном так же, как и в случае трансаминазы (разд. Д, 6), но функция его не ясна [43]. Поразительным является тот факт, что, по имеющимся данным, 50% всего количества витамина Ве в организме находится в виде PLP в составе мышечной фосфорилазы [44]. Из исследований, проведенных на крысах с недостаточностью витамина Ве, следует, что PLP в фосфорилазе может служить резервным источником, значительная асть которого при недостаточности витамина Ве может расходоваться на другие цели. [c.222]

    Все трансаминазы Гексо-, глюко-, фосфо-фруктокииазы, РНК-поли-меразы, РНКазы [c.400]

    Реакции декарбоксилирования в отличие от других процессов промежуточного обмена аминокислот являются необратимыми. Они катализируются специфическими ферментами-декарбоксилазами аминокислот, отличающимися от декарбоксилаз а-кетокислот (см. главу 10) как белковым компонентом, так и природой кофермента. Декарбоксилазы аминокислот состоят из белковой части, обеспечивающей специфичность действия, и простетической группы, представленной пиридоксальфосфатом (ПФ), как и у трансаминаз. [c.441]

    Можно вводить метку в а-положение аминокислоты путем декарбоксилирования производных а-ацетиламиномалоновой кислоты см. схему (7) в кислых растворах тритийсодержащего растворителя. Альтернативно, можно вводить метку в а-положение аминокислоты непосредственно в условиях, которые вызывают рацемизацию при а-С атоме, т. е. в сильно щелочных средах или при кипячении с уксусным ангидридом в уксусной кислоте. Однако для проведения многих биологических исследований лучще избегать применения [а- или Р- Н] меченных аминокислот. Обмен трития в этих положениях происходит через реакции трансаминирования схема (32) потеря трития, находящегося в р-положении аминокислот, используется в методе анализа трансаминаз. Обработка а.р-тритированных а-аминокислот с помощью оксидаз аминокислот или почечной ацилазы может приводить к существенной потере активности осторожность следует соблюдать и при использовании ферментов для разделения рацемических аминокислот, меченных радиоактивными изотопами. [c.249]


    В соответствии с давно принятым постулатом в активном центре пиридоксальфосфат-зависимых ферментов, таких, как аминотрансферазы (трансаминазы), конъюгат аминокислоты с пиридоксальфосфатом ориентирован таким образом, чтобы связь с а-водородным атомом располагалась почти перпендикулярно плоскости пиридинового цикла. Фермент способен катализиро- [c.205]

    В случае глутаматдекарбоксилазы протонирование положения С-4 молекулы кофактора осуществляется со стороны st, так же как это имеет место при катализе трансаминазами. Таким образом, все реакции протекают только с одной стороны плоскости кофермент-субстратного конъюгата, а другая сторона остается недоступной (рис. 8.3) [21]. [c.208]

    Ковалентные комплексы чрезвычайно важны с точки зрения химии, но с точки зрения энзимологии они не столь интересны. Наиболее ферментоподобными являются нековалентные комплексы, как, например, комплексы, образуемые циклоамилозой. Пиклоамилозы и их производные прекрасно моделируют такие ферменты, как химотрипсин, рибонуклеазу, трансаминазу [27] и карбоангидразу [28]. Высокие каталитические свойства проявляют полимерные комплексы. Показано, что скорости реакций в обращенных мицеллах приближаются к ферментативным [25]. Очевидно, что катализ, движущей силой которого выступает комплексообразование, будет интенсивно исследоваться в ближайшие годы. [c.341]

    В связи с тем что во всех пиридоксалевых ферментах (включая трансаминазы) карбонильная группа кофермента (—СНО) оказалась связанной с -аминогруппой лизина белковой части, в классический механизм реакции трансаминирования А.Е. Браунштейн и Э. Снелл внесли следующее дополнение. Оказалось, что взаимодействие между субстратом, т.е. Ь-амино-кислотой (на рисунке-асиартат), и пиридоксальфосфатом происходит не путем конденсации с вьщелением молекулы воды, а путем реакции замещения, при которой КН,-группа субстрата вытесняет -КН,-группу [c.436]

    Клиническое значение определения активности трансаминаз. Широкое распространение и высокая активность трансаминаз в органах и тканях человека, а также сравнительно низкие величины активности этих ферментов в крови послужили основанием для определения уровня ряда трансаминаз в сыворотке крови человека при органических и функциональных поражениях разных органов. Для клинических целей наибольшее значение имеют две трансаминазы —аспартат-аминотрансфераза (АсАТ) и аланин-аминотрансфераза (АлАТ), катализирующие соответственно следующие обратимые реакции  [c.439]

    В лаборатории Майстера получены доказательства, что глутамин и аспарагин в животных тканях подвергаются сочетанному трансаминированию и дезамидированию под влиянием специфических трансаминаз амидов (глутаминтрансаминазы и аспарагинтрансаминазы) и неспецифической со-амидазы  [c.461]

    Пиридоксаль и пиридоксамин в виде своих 5а-фосфорных эфиров, находясь в качестве простетической группы совместно со специфическими белками в составе аминотрансфераз (трансаминаз), декарбоксилаз аминокислот и других пиридоксальфосфатных ферментов, принимают биокаталити-ческое участие в синтезе и расщеплении аминокислот. Пиридоксаль-5а-фосфат и пиридоксамин-5а-фосфат являются коферментными формами витамина Вб- [c.358]


Смотреть страницы где упоминается термин Трансаминазы: [c.733]    [c.123]    [c.147]    [c.354]    [c.89]    [c.187]    [c.187]    [c.484]    [c.70]    [c.55]    [c.147]    [c.641]    [c.438]    [c.438]    [c.439]    [c.439]    [c.454]    [c.462]    [c.548]   
Органическая химия. Т.2 (1970) -- [ c.733 ]

Биологическая химия Изд.3 (1998) -- [ c.435 , c.437 , c.438 ]

Биохимия (2004) -- [ c.374 , c.375 ]

Биохимия растений (1966) -- [ c.400 , c.401 ]

Органическая химия Углубленный курс Том 2 (1966) -- [ c.717 ]

Биохимический справочник (1979) -- [ c.132 ]

Курс органической химии (0) -- [ c.910 ]

Начала органической химии Кн 2 Издание 2 (1974) -- [ c.706 , c.711 ]

Начала органической химии Книга 2 (1970) -- [ c.779 , c.785 ]

Биология Том3 Изд3 (2004) -- [ c.272 ]

Ферменты Т.3 (1982) -- [ c.2 , c.6 , c.318 ]

Основы биохимии (1999) -- [ c.266 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.160 ]




ПОИСК







© 2025 chem21.info Реклама на сайте