Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тритий обмен

    Получение уксусной кислоты, меченной тритием, обменом с ТаО (См. дополнение стр. 419) [c.382]

    Получение бензола, меченного тритием, обменом [c.382]

    Получение уксусной кислоты, меченной тритием, обменом с Т О [c.419]

    Получение бензола, меченного тритием, обменом в присутствии катализаторов [c.421]

    Применение в качестве индикатора радиоактивного водорода. Была сделана попытка определить стадии, через которые протекает изомеризация -бутана в изобутан при помощи радиоактивного изотопа водорода, трития [65]. Катализатор представлял собой хлористый алюминий, нанесенный на древесный уголь или на окись алюминия. Он применялся в присутствии или в отсутствии хлористого водорода. Обмен атомами водорода между бутаном и молекулярным водородом мало дает для объяснения механизма изомеризации, за исключением случаев, когда молекула бутана атакуется водородом. Степень обмена с хлористым водородом указывает на более эффективное участие его в реакции. Поскольку с тщательно очищенными реагентами опыты не проводились, любые заключения о механизме реакции, основанные на обмене трития и водорода, остаются открытыми для критики. [c.21]


    Водородный обмен между катализатором и реагирующими углеводородами был доказан с помощью меченых атомов. Применялась серная кислота с тритием вместо водорода и тритий был обнаружен в алкилате. [c.296]

    Прочность связи С — Н зависит от строения остальной части молекулы. К подвижным связям относятся связи с — Н в енолизируемых кетонах, связи активных водородов в метиленовых группах малоновых кислот стабильные связи имеются в алифатических и ароматических углеводородах. Для обменных реакций тритий используют в виде окиси трития или газа активность I ммоля этих веществ составляет около 56 кюри. Для синтеза соединений, меченных тритием, целесообразно использовать богатый экспериментальный материал по дейтерированию различных соединений, причем часто аналогичные реакции обмена с тритием позволяют получать продукт с более высоким выходом. [c.684]

    Реакция изотопного обмена некоторых ароматических углеводородов была проведена также в присутствии алюмосиликатного катализатора, меченного радиоактивным изотопом водорода — тритием. Для этого катализатор насыщали водой, содержащей тритий (окисью трития). Опыты по изотопному обмену на катализаторе, содержащем воду, меченную тритием, проводили в тех же условиях, что и на дейтерированном катализаторе давление — атмосферное объемная скорость 0,10—0,15 час температура 150-200 . [c.251]

    Обмен атома водорода на атом дейтерия нли трития  [c.79]

    Методы введения дейтериевой метки очень близки к таковым для введения тритиевой метки за исключением того, что дейтерий— стабильный изотоп, и, следовательно, для его введения не может быть использован обмен, индуцируемый облучением. Ограничения для дейтериевой метки аналогичны таковым для трития, но отсутствие радиоактивности упрощает эксперимент и укорачивает синтетические методики. [c.250]

    Водородный обмен — обмен (замена) атома водорода на атом дейтерия или трития. [c.63]

    На всех трех использованных для бромирования катализаторах протекает обмен водорода. Это было ясно показано в реакции бромирования 1-бромбензола-4-Н при которой должен был бы получиться не содержащий трития 1,4-дибромбензол фактически в зависимости от природы катализатора и продолжительности реакции в продуктах реакции сохраняется от 4,6 до 47,4% трития, содержащегося в исходном соединении. [c.564]

    При водородном обмене с основанием оно взаимодействует с атомом водорода СН-связи, вызывая ее растяжение или разрыв в переходном состоянии, причем в предельном случае образуется карбанион [14], Это находит подтверждение в измерениях кинетического изотопного эффекта при дейтерий(тритий)-обмене. Его величина близка к вычисленной при условии полного разрыва связей углерода с изотопами водорода [15]. Указанный механизм называется протофильным, так как замещение водорода обусловлено протофильностью реагента. Протонизации водорода благоприятствует такая поляризация СН-связи, при которой у атома водорода понижена электронная плотность. [c.129]


    Обмен водорода можно осуществить при обработке кислотами или основаниями. Как и реакция 11-1, реакция обмена используется главным образом для выяснения вопросов, связанных с изучением механизмов реакций, например для установления относительной кислотности, но она также может быть использована в синтетических целях для получения дейтери-рованных или меченных тритием молекул. Под действием обычных сильных кислот, например H2SO4, в реакцию обмена вступают только достаточно кислые протоны, такие, как ацетиленовые, аллильные и т. п. Однако под действием суперкислот можно осуществить обмен первичных, вторичных и третичных атомов водорода в алканах (см. т. 1, разд. 8.1) [43]. При этом порядок реакционной способности водорода меняется в ряду третичный>вторичный>первичный. Если в молекуле имеются связи С—С, они также могут расщепляться (реакция 12-46). Механизм обмена (показанный ниже на примере метана) включает атаку Н+ по связи С—Н с образованием пятивалентного [c.421]

    Быстрое достижение равновесия изомерных бутенов при условиях процесса алкилирования подтвет)ждается результатами изучения алкилирования изобутана 2-бутеном в присутствии меченной тритием серной кислоты при 10 [32]. Реакции алкилирования предшествует перераспределение атомов водорода и трития в олефине и катализаторе. Кроме того, тритий — водородный обмен происходит и при барботаже 2-бутена через меченную тритием серную кислоту при условиях, ведущих к незначительной абсорбции олефина. Это указывает не только на быстрое протекание тритий — водородного обмена, но и на обратимую абсорбцию олефина в кислоте. [c.184]

    Проведены многочнсленгше исследования скоростей денротоиирЬваиия карбонпльиых соединений. Эти данные интересны не только потому, что устанавливают сая,ь между термодинамической н кинетической кислотностью этих соединений, но также н потому, что необходимы для выяснения механизмов реакций, в которых еноляты участвуют в качестве интермедиатов. Скорости образования еиолятов можио удобно из-, мерять, наблюдая за изотопным обменом с дейтерием или с тритием  [c.277]

    В органической химии, и особенно в биохимии, эти два радиоизотопа будут дополнять друг друга, поскольку в тех случаях, когда могут проявляться либо катализируемые ферментами обменные реакции, либо различие массы протия и трития, либо различие в энергиях активации связей С — Н и С — Т, применение трития становится проблематичным. [c.663]

    Для синтеза меченых соединений практически неприменимы атомы водорода, соединенные с кислородом, серой и азотом, так как обмен в этих случаях проходит быстро в обоих направлениях в мягких условиях, т. е. не имеет смысла метить соединения тритием в группах —СООН, —ОН, —5Н, —NH2, = NH и т. д., поскольку, например, уже при соприкосновении с водой радиоизотоп очень быстро будет замещен протием. Более стабильным и поэтому более пригодным для приготовления меченых соединений является водород, связанный с углеродом. [c.684]

    Проведение каталитических реакций несложно. Поскольку катализ металлами весьма эффективен и сопровождается лишь небольшой деструкцией, этот метод пригоден для синтеза большого числа меченых соединений различных типов, причем часто можно достигнуть больших величин удельных активностей, чем в методе Вильцбаха [84]. Обменной реакцией с окисью трития на платиновом катализаторе были синтезированы меченые стероиды, пурины, пиримидины и нуклеотиды. [c.685]

    К обменным реакциям относится и широко используемый метод Вильцбаха метки органических соединений газообразным тритием. Выполнение этой реакции относительно несложно вещество, которое необходимо пометить, в виде газа, пленки жидкости или тонкого слоя порошка подвергают в течение нескольких дней действию нескольких кюри чистого га.зообразного трития при комнатной температуре и слегка пониженном давлении. Тритий в этом случае служит не только источником изотопа, но своим излучением одновременно вызывает ионизацию и возбуждение молекул, что приводит к замещению водорода на тритий. Вильцбах для этих целей сконструировал относительно простую аппаратуру, изображенную на рис. 600. [c.685]

    В настоящей работе приведен экспериментальный материал, полученный в результате изучения дейтеро-водородпого обмена различных производных бензола и циклогексана на алюмосиликатном катализаторе крекинга промышленной выработки. Кроме того, для сравнения был изучен водородный обмен между некоторыми ароматическими углеводородами и окисью трития в присутствии того же образца алюмосиликатного катализатора. [c.247]

    Метод с обменом тритием особенно ценен в определениях очень малых количеств активного водорода, содержащегося в концевых гидроксильных и карбоксильных группах полиэтилентерефталата — важного труднорастворимого конденсационного полимера. В двух описанных методиках такого анализа использовали тритиевую воду. В анализе первым из этих методов [14] пленку или волокно анализируемого полимера после удаления с него всей аппретуры оставляли на несколько дней нри комнатной температуре в большом избытке Н20 с известной удельной радиоактивностью. Обработанный образец выделяли путем сушки вымораживанием, а затем нагревали до 80°С для удаления из него следов тритиевой воды. Влияние условий сушки на удельную радиоактивность обработанного полимера не изучалось. Затем обработанный образец погружали в определенное количество воды, где проходила реакция три-тиевого обмена и измеряли радиоактивность норции этой воды жидкостным сцинтилляционным счетчиком. [c.250]


    Метод с LiA1 H4 имеет некоторые иреимунхества но сравнению с методами изотопного обмена, применяемыми в определениях активного водорода как в низкомолекулярных соединениях, так и в малых количествах соединений. Он применим к анализу как растворимых твердых веществ, так и жидкостей, если последние не слишком сильно улетучиваются за время, требуемое для их разложения под действием реагента. Кроме того, исиользование при анализе этим методом замкнутой системы для проведения реакции и измерения радиоактивности создает благоприятные условия для обнаружения следовых количеств активного водорода. В то же время чувствительность обменных методов уменьшается из-за неполного удаления меченого спирта и, быть может, в еще большей степени, за счет дополнительного обмена трития обработанного образца с атмосферной влагой. Основной недостаток метода с алюмогидридом лития заключается в том, что он не является абсолютным, и это сильно ограничивает возможность его применения в анализе полимерных материалов. При этом в качестве стандартов можно использовать полимеры, проанализированные другими методами, но и тогда часто получаются лишь полуколичественные или относительные результаты. Менее существенным недостатком метода является наличие помех от нитросоединений. [c.254]

    В ЭТОЙ области было получено с помощью определения кинетической кислотности [110] при катализируемом основаниями обмене водорода на дейтерий или тритий. При этом было найдено, что в случае галогена, связанного с карбанионным центром (41), кислотность растет в ряду С1 > Р. В случае иода и брома важную роль могут играть участие -орбиталей и влияние пространственных затруднений, однако тот факт, что фтор оказывает самое слабое влияние на кислотность свидетельствует, что в этом случае отталкивание электронных пар эффективно компенсирует индуктивный эффект (42). Влияние хлора п фтора на кислотность можно сопоставить также по величинам констант ионизации замещенных нитрометанов, приведенных в табл. 3.13. Трудно провести оценку сравнительного влияния различных атомов галогенов находящихся у атома, связанного с карбанионным центром (43), поскольку в этом случае (3-элиминирование протекает чрезвычайно легко, однако, и в данном случае фтор по меньшей мере так же активен, как и хлор. [c.676]

    Можно вводить метку в а-положение аминокислоты путем декарбоксилирования производных а-ацетиламиномалоновой кислоты см. схему (7) в кислых растворах тритийсодержащего растворителя. Альтернативно, можно вводить метку в а-положение аминокислоты непосредственно в условиях, которые вызывают рацемизацию при а-С атоме, т. е. в сильно щелочных средах или при кипячении с уксусным ангидридом в уксусной кислоте. Однако для проведения многих биологических исследований лучще избегать применения [а- или Р- Н] меченных аминокислот. Обмен трития в этих положениях происходит через реакции трансаминирования схема (32) потеря трития, находящегося в р-положении аминокислот, используется в методе анализа трансаминаз. Обработка а.р-тритированных а-аминокислот с помощью оксидаз аминокислот или почечной ацилазы может приводить к существенной потере активности осторожность следует соблюдать и при использовании ферментов для разделения рацемических аминокислот, меченных радиоактивными изотопами. [c.249]

    Разработан препаративный метод синтеза исчерпывающе дей-териров анных ДВСй 2, 5-диметил-4-метилен-1, 3-оксатиолана [50]. В качестве среды для получения дейтерированных продуктов ДМСО не пригоден из-за большой склонности к обмену аротонов в щелочных условиях [51]. Базируясь на данных [52] об отсутствии изотопного обмена в основной среде между толуолом, меченным тритием по СНз-группе, и ГМФТА, авторы [50] использовали в качестве растворителя ГМФТА, хотя, как указывалось выше, в1 ходы две в нем значительно-ниже, чем в ДМСО. Источником дейтерия служила окись дейтерия (ВаО), источником ацетиле-на-Вз—карбид кальция, реагирующий с тяжелой водой в процессе реакции. Известно [53 ] что карбид кальция в этих условиях [c.14]

    С целью разрешения противоречий между результатами Н/В-изотопного обмена (3,(3 -ТКС в солях с 3,4-днгндронзохннолннамн [23, 27], реакционной способностью (3,(3 -ТКС 1-8 [16-26] и существующими представлениями о их таутомерии [7, 8], а также с целью разработки способа получения изотопомеров (дейтерий) и меченых (дейтерий, тритий) производных (3,(3 -ТКС нами изучен изотопный обмен (3,(3 -ТКС в различных условиях. Установлено, что Н/О-обмен а-протонов ацильного заместителя (3,(3 -ТКС 3, 5-7 эффективно осуществляется в присутствии различных азотистых оснований (Ру, хинолин, триэтиламин и др.) и в растворах полярных апротонных растворителей (ПАР) или полярных растворителях - АВС (акцепторах Н-связи) [30], например ДМФА, ДМСО, ГМТФК, тогда как в амфи-протонных растворителях донорах дейтерия (ВгО, спирты-с ) даже в присутствии каталитических количеств оснований (алкоголяты и гидроксиды щелочных и щелочноземельных металлов, карбонаты и гидрокарбонаты щелочных металлов) Н/В-обмена а-протонов ацильных заместителей не наблюдалось. Эти результаты окончательно исключают дианионы 26, 27 как возможную причину изотопного обмена в ацильных фрагментах (3,(3 -ТКС. Следовательно вероятной причиной этого в солях 21 [23, 27] и специфичной реакционной способности (3,(3 -ТКС [16-26] остается таутомерия (прототропия). Причем, именно таутомерия анионов (3,(3 -ТКС. При этом закономерно возникает вопрос, почему в присутствии азотистых оснований и в ПАР Н/В-обмен ацильных фрагментов (3,(3 -ТКС осуществляется, а в амфн-протонных растворителях нет Причина этих различий, вероятно, кроется, с одной [c.169]

    Методы анализа, основанные на изотопном обмене с тритием, описаны для определения растворимости воды в углеводородах и других неполярных органических веществах. Обычно при этом применяют тяжелую воду НТО и измеряют интенсивность наведенной -радиоактивности с помощью газовых или жидкостных счетчиков. Тайлор и сотр. [7, 30] осуществляли такой протонный обмен, барботируя воздух, насыщенный парами НТО, через жидкий бензол и другие углеводороды. Радиоактивную воду извлекали, абсорбируя ее оксидом кальция, а углеводород удаляли дистилляцией в вакууме. Затем тритий извлекали из сорбента обменной реакцией с парами этилового спирта и определяли радиоактивность с помощью газового счетчика Гейгера— Мюллера. Давление в счетчике регулировали, добавляя необходимое количество аргона. Каддок и Дэвис [10, И] также барботировали воздух через жидкие углеводороды при определении растворимости воды, но радиоактивнрсть измеряли более простым методом с помощью жидкого сцинтиллятора. Схема прибора, применявшегося в этих исследованиях, приведена на рис. 10-1. В дальнейшем обсуждаемая методика была усовершенствована — для насыщения пробы ее встряхивали с водой, содержащей тритий [29, 57, 58]. Так, Джонс и Монк [29] встряхивали несколько миллилитров содержащей тритий воды (активность около 2 мКюри/мл) с 10—25 мл сухой пробы не менее 4 ч в закупоренном стеклянном термостатированном сосуде. Большую часть насыщенной органической фазы сливают в подогретую пробирку и пробу объемом 5 мл переносят с помощью подогретой пипетки в колбу емкостью 10 мл, содержащую 5 мл НгО. Закупоренную колбу встряхивают около 4 ч. Затем отбирают порцию водной фазы объемом 1 мл и оценивают радиоактивность с помощью вы-сокостабильных счетных устройств на основе жидких сцинтилляторов, например 50 г нафталина, 7 г 2,5-дифенилоксазола и 0,05 г [c.520]

    При нитровании обычного бензола смесью азотной кислоты и серной кислоты-Нг образуется нитробензол, содержание дейтерия в котором не превышает нормальное. Это свидетельствует о том, что в условиях нитрования изотопный обмен не происходит. Вследствие нормального изотопного эффекта водорода следует ожидать, что обмен дейтерия с ароматическим кольцом будет протекать значительно легче, чем его замещение на водород, в другом опыте бензол-Н] обрабатывали концентрированной серной кислотой в условиях, при которых проводят процесс нитрования (50—60°, продолжительность реакции менее 1 часа) при этом 16,2% дейтерия обменивается с водородом кислоты, что значительно меньше количества дейтерия, которое обменялось бы в случае чисто равновероятностного распределения изотопов. Ингольд, Райзин и Уилсон [2] исследовали обратную реакцию, а именно дейтерирование обычного бензола серной кислотой-Н и установили, что обмен происходит независимо от процесса сульфирования и при достаточном времени реакция может протекать даже при комнатной температуре. Они также нашли [3], что при всех условиях скорость нитрования нормального бензола азотной кислотой-Н всегда превышает скорость дейтерирования. Этот результат подтвердил Меландер [4], который установил, что при нитровании нормального толуола смесью азотной и серной кислот, содержащей небольшое количество воды-Нг- тритий не внедряется в ароматическое кольцо. Лауэр и Ноланд показали также, что 1-нитробензол-2, 3,4-Ньз вообще не обменивается с серной кислотой в условиях нитрования. [c.350]


Смотреть страницы где упоминается термин Тритий обмен: [c.39]    [c.27]    [c.31]    [c.33]    [c.327]    [c.362]    [c.522]    [c.344]    [c.684]    [c.251]    [c.29]    [c.248]    [c.688]    [c.151]    [c.251]   
Химия изотопов Издание 2 (1957) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Тритий

Тритил



© 2025 chem21.info Реклама на сайте