Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полисахариды, анализ

    Ферментативный гидролиз является методом, альтернативным контролируемому кислотному гидролизу полисахаридов. Его принципиальное преимущество состоит в специфичности расщепления гликозидных связей, благодаря чему можно получать фрагменты макромолекулы полисахарида, анализ которых дает ценную информацию о строении исходного полимера, позволяет судить о конфигурации и местоположении гликозидных связей. [c.69]


    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]

    Успехи в изучении надмолекулярной структуры полисахаридов достигнуты главным образом в результате применения рентгеноструктурного анализа молекулярных конформаций их в кристаллическом состоянии, а также электронной микроскопии. [c.17]

    Здесь также не проводили анализ полученных данных в отношении возможных вторичных атак фермента на образующиеся в результате первичной реакции фрагменты полисахарида. [c.90]

    При расшифровке третичной структуры белков решающую роль сыграл рентгенографический метод, который в 1957 г. позволил английскому исследователю Кендрью впервые определить третичную структуру миоглобина. В дальнейшем рентгеноструктурный анализ позволил установить пространственное строение многих других белков и связать его с их биологической функцией. Так, молекула лизоцима — фермента, расщепляющего полисахариды — имеет трехмерную структуру, показанную на рис. 67. Стрелкой показана впадина, представляющая собой активный центр фермента сюда подходит молекула полисахарида, подвергающегося расщеплению. [c.642]

    В последние годы появилось много сведений о строении биологических мембран. Важные данные были получены отчасти благодаря биохимическим методам (выделение различных химических соединений из клеточных мембран), рентгеноструктурному анализу, электронному и ядерному магнитному резонансу, спектроскопии, но в основном благодаря применению электронного микроскопа. Клеточные мембраны, такие, как мембрана эритроцита, состоят из примерно равных коли честв липидов и белков. В них присутствует также небольшое количество (несколько процентов) полисахаридов, которые соединяются с полипептидными цепями с образованием гликопротеидов. [c.465]


    Более глубокий анализ структур этих полисахаридов может, однако, привести к другим выводам. [c.29]

    В руках у исследователя неизвестный полисахарид (не будем говорить о том, как он был выделен и очищен — это само по себе большая и сложная тема). Белый порошок, растворим в воде, нерастворим в обычных органических растворителях. Вот, собственно, и все, что о нем пока известно. А что нужно узнать Структуру. Иными словами, расставить по местам те десятки тысяч атомов, из которых состоят молекулы связать их одним единственным способом ковалентными связями. В последней фразе задача сформулирована вполне точно, однако решить такую задачу в лоб современной науке не под силу. Нельзя последовательно установить положение одного атома за другим, если общее их число измеряется тысячами или десятками тысяч — это потребовало бы невообразимых затрат труда и времени. Поэтому общая стратегия структурного анализа таких сложных объектов состоит в разборке молекулы на более мелкие блоки, установлении структуры этих блоков (если и они сложны, то также путем предварительного расщепления на еще более мелкие фрагменты) и затем в реконструкции (мысленной) исходной системы. К счастью (и это далеко не случайное везение, а глубоко обоснованный биологический принцип), все биополимеры построены именно по блочному типу и по самой своей природе сравнительно легко допускают такую разборку. Это значит, что в их молекулах чередуются сравнительно легко расщепляемые связи и участки из значительно более прочных связей. Такие участки и есть те самые блоки, [c.48]

    В полисахаридах легко расщепляемые связи — гликозидные. Разрыв всех гликозидных связей в полисахариде приводит к образованию моносахаридов, из остатков которых был построен полисахарид. Разрыв части гликозидных связей ведет к получению более крупных фрагментов, например олигосахаридов. После того как установлена структура единичных блоков — моносахаридов (что является относительно простой задачей), структурный анализ исходной системы состоит уже в расстановке не десятков тысяч или тысяч атомов, а немногих тысяч или немногих сотен моносахаридных остатков по определенным местам — задача, все еще весьма сложная, но уже разрешимая. Для ее решения надо узнать, каким путем (из множества возможных) эти мономеры соединены в полисахаридной молекуле, выяснить размеры циклов моносахаридных остатков (пиранозные или фуранозные) в исходной цепи и установить конфигурации их гликозидных связей. [c.49]

    Количественный анализ состава смеси метилированных моносахаридов, полученных из полисахарида, позволяет установить также среднюю длину линейных участков цепей, или среднюю частоту разветвлений (по соотношению продуктов типа 2 и 3), а также оценить среднюю молекулярную массу полисахарида по соотношению продуктов типа 2 и 1 (для неразветвленных полисахаридов) .  [c.54]

    Мы видим, что метилирование — высоко информативный метод структурного анализа полисахаридов. Но тем не менее это всего лишь метод мономерного анализа, который в принципе, по самой сути, не может дать представ- [c.54]

    Для восстановления утраченных характеристик структуры полисахаридов нужны принципиально другие методы, и мы их разберем в последующих главах. Но сначала надо рассказать о том, как устанавливают строение моносахаридов и их метиловых эфиров, т. е. о структурной концовке мономерного анализа. [c.55]

    Такой метод анализа идеально подходит для изучения смесей метилированных сахаров, получающихся при мономерном анализе полисахаридов с помощью метода ме-. тилирования. В самом деле, хромато-масс-спектрометрия позволяет идентифицировать известные вещества со свидетелями при помощи прямого сравнения и тут же, используя масс-спектрометр, дополнительно подтверждать их структуру, а для неизвестных веществ или для тех, для которых не оказалось нужного заведомого образца, — установить строение (без конфигураций, конечно) по масс-спектру. [c.75]

    В настоящее время хромато-масс-спектрометрия — магистральный путь развития структурного анализа полисахаридов , позволяющий получить на нескольких миллиграммах изучаемого биополимера за считанные дни такую информацию, для добывания которой еще совсем недавно требовались десятки, а то и сотни граммов материала и годы труда. [c.75]

    Возвратимся к вопросу об установлении строения полисахаридов. Мы оставили рассмотрение его на стадии завершения мономерного анализа, включая результаты, полученные методом метилирования. Что же к атому моменту уже известно о структуре, а что еш,е предстоит узнать  [c.86]

    Выяснение конфигурации гликозидных связей — это по существу задача мономерного анализа, так как относится не к характеристике структуры цепей, а к детализации структуры отдельных звеньев. Тем не менее известными сейчас методами мономерного анализа эта задача не решается. Дело в том, что все эти методы по своей сути деструктивны и обязательно включают расщепление гликозидных связей. А при всех известных способах расщепления гликозидных связей, применяемых в мономерном анализе полисахаридов (кроме ферментативного гидроли-8а, см. ниже), информация о конфигурации этой связи теряется. [c.95]

    По-видимому, универсальный (гипотетический) метод определения конфигурации гликозидных связей в полисахаридах можно представить себе следующим образом. Это должен быть такой метод расщепления гликозидных связей, который приводил бы количественно к производным моносахаридов подобно кислотному гидролизу. Но с той, однако, разницей, что структура этих производных должна зависеть от конфигурации расщепляемой гликозидной связи исходного остатка. Тогда мы имели бы метод мономерного анализа, который одновременно давал бы информацию и о природе каждого мономерного звена, и о конфигурации его гликозидной связи. К сожалению, ничем похожим на такое идеальное решение углеводная химия пока не располагает (хотя препятствий принципиального характера к разработке подобного метода не видно). Наилучшее доступное сейчас приближение к идеалу — это окисление ацетатов полисахаридов хромовым ангидридом в уксусной кислоте. Суть этого метода состоит в следующем. [c.96]


    Мы рассмотрели несколько методов структурного анализа полисахаридов. Они далеко не исчерпывают всего арсенала инструментов исследования в этой области, но характеризуют многие важные принципы такого исследования. В смысле возможностей выяснения ближнего порядка моносахаридных звеньев в цепях и их дальнего порядка, а также оценки общего плана построения макромолекулы эти методы информативны далеко не в равной степени. Если, как мы видели, для характеристики ближнего порядка эти методы вполне пригодны, то с вопросами дальнего порядка дело обстоит гораздо менее благополучно. В сущности, все эти методы (заметим еще раз, основные методы структурного анализа полисахаридов) позволяют узнать о дальнем порядке очень мало, по крайней мере в общем случае. Это, однако, не эквивалентно бессилию современной науки перед проблемой установления структур сложных полисахаридов. Есть несколько эффективных подходов к определению общей схемы построения цепей и дальнего порядка звеньев, хотя и носящих более частный характер, чем разобранные выше методы. Вот один из примеров. [c.101]

    Итак, мы видим уже два принципа установления структуры сложных полисахаридов с одной стороны, путь от мономерного анализа, через расщепление на олигосахаридные блоки и реконструкцию последовательностей моносахаридных остатков во все более длинных сегментах цепей, а с другой — путь от общего представ- [c.101]

    Наиб, интенсивно в 70-х гг, развивались синтез олигонуклеотидов и генов исследования клеточных мембран и полисахаридов анализ первичной и пространста структур белков. В кач-ве примера можно указать на успешное изучение структуры важных ферментов (трансаминаза, Р-га-лактозидаза, ДНК-зависимая РНК-полимераза), защитных белков (у-глобулины, интерфероны), мембранных белков (аденозинтрифосфатазы, бактериородопснн). Большое значение приобрели работы по изучению строения и механизма действия пептидов-регуляторов нервной деятельности (т, наз. нейропептиды). [c.288]

    Очистка растворов некоторых веществ бывает необходимой для ироведення точных анализов. При этом ультрафильтрация может оказаться наиболее простым и эффективным методом очистки. Например, у льтрафильтрацией крови через микропористые мембраны можио получить фильтрат, в котором легко определить содержание глюкозы простым колориметрическим методом, так как в фильтрате отсутствуют протеины, полисахариды и друпие высокомолекулярные вещества, влияющие на результат анализа. [c.287]

    Из фундаментальных соотношений теории случайных марковских процессов выведены стохастические интегродифференциальные (скачкообразные), разрывные (дискретно-непрерывные), диффузионные и матричные (дискретные в пространстве состояний по времени) модели кинетики механодеструкции, описывающие эволюцию дифференциальных функций числового распределения макромолекул полимеров по длинам. Проведен последовательный анализ выведенных уравнений кинетики механодеструкции. Он показал, что при некоторых упрощающих предположениях решениями этих уравнений являются известные в литературе функции распределения Пуассона, Танга, Кремера-Лансинга и др. С помощью математического аппарата теории дискретных марковских процессов построены модели кинетики структурных превращений в ферритах -шпинелях, активированных в планетарных машинах разработана обобщенная модель кинетики механорасщепления зерен на примере природного полисахарида - крахмала. Из основного кинетического уравнения Паули выведены стохастические модели ряда элементарных химических реакций, протекающих в дисперсных системах при механическом нагружении частиц твердой фазы. Проведен анализ выведенных уравнений и выявлены преимущества статистического метода описания кинетики химических реакций перед феноменологическим. [c.19]

    ХОЛИНЭСТЕРАЗА, см. Ацетилхолинэстераза. ХОЛОСТОЙ ОПЫТ (контрольный опыт), повторение процедуры хим. анализа в аналогич. условиях (с теми же реагентами, приборами и т. п.), но без анализируемого к ва. Проводят для определения поправки, к-рую необходимо вычесть из значения аналит. сигнала, измеренного при анализе исследуемого в-ва, чтобы получить правильный результат. Иногда поправку специально не определяют, а учитывают непосредственно в ходе измерений аналит. сигнала напр., в дифференц. спектрофотометрии р-р, полученный в X. о., используют в качестве р-ра сравнения. X. о., проведенный без анализируемого в-ва, не всегда позволяет найти правильное значение поправки, т. к. распределение определяемого компонента между фалами в разл. стадиях анализа может зависеть от содержания всех остальных компонентов. Флуктуации результатов X. о. определяют предел обнаружения вещества. Значения поправки X. о. зависят от чистоты реактивов и условий анализа. ХОНДРОИТИНСУЛЬФАТЫ, сульфатированные муко-полисахариды. Входят в состав соединит, тканн животных (хрящей, сухожилий). Углеводные цепи X. (см. ф-лу) по- [c.665]

    Структурный анализ этого полисахарида показывает, что в его цепи имеются участки трех типов более или менее длинные последовательности из мономеров одного типа, аналогичные последовательности мономеров второго] типа, и участки, где остатки маннуроновой и гулуроновоЕ кислот чередуются более или менее хаотически. Схема- тически такую структуру люжно изобразить так  [c.32]

    В химии полимеров мономерным анализом называют выяснение вопроса о том, из каких мономерных остатков построен изучаемый полимер. В химии полисахаридов мономерный анализ должен прежде всего установить, из каких моносахаридов построен полисахарид. Для этого нужно расщепить его до моносахаридов, т. е. разорвать все гликозидные связи. Важнейшая реакция, с помощью которой такой результат может быть достигнут,— это кислотный гидролиз гликозидных связей, представленный ] на примере гидролиза фрагмента Р-1 3-связанного<1 D-глюкана  [c.50]

    После гидролиза можно выделить образовавшиеся моносахариды, установить их строение и таким образом узнать, каков моносахаридный состав полисахарида. Конечно, знание моносахаридного состава не позволяет сделать никаких заключений о последовательности моносахаридных остатков в цепи, о регулярности или нерегулярности ее структуры , о наличии или отсутствии разветвлений — словом, ни об одной характеристике макромолекулы как целого. В этом смысле его можно уподобить данным элементного анализа низкомолекулярного веш,ест-ва. Более tojo, моносахаридный состав полисахарида умалчивает даже о многих особенностях строения самих моносахаридных остатков в полисахаридной цепи. [c.51]

    Таким образом, видно, что метод метилирования позволяет выполнить гораздо более детальный мономерный анализ полисахарида, установить не только природу моносахаридных остатков, из которых он построен, но и положения межмономерных связей в каждом остатке и даже тип структуры (разветвленный — неразветвленный). Следует, однако, помнить, что при всех своих достоинствах метод метилирования не есть прямой способ установить, какие атомы кислорода вовлечены в межмономерные связи и циклы. Это лишь метод, основанный на рассуждении от противного ( поскольку этот гидроксил метилирован, он не был использован для образования гликозидных связей или циклов. Следовательно... ). А при таком способе могут возникать неопределенности. Мы не будем их здесь разбирать, а хотим только предостеречь читателя от абсолютизации этого метода (рассуждение делали метилирование, значит, есть структура , довольно распространено) и отослать его за подробностями к более специальной литературе. [c.54]

    Такой анализ, однако, технически сложен и потому мало достоверен. Дело в1 том, что для больших молекулярных масс это соотношение может составлять величину порядка (1 100) — (1 1000), а такие соотношения могут быть измерены экспериментально с весьма малой точностью. В разветвленных же полисахаридах молекулярная масба определяется отношением продуктов типа 2 к разности между продуктами типа 1 и типа 3. В подобных случаях результат обычно безнадежно тонет в ошибках измерений. [c.54]

    Известно, из каких моносахаридов построен полисахарид, в какой циклической форме их остатки входят в его состав, каково положение межмономерных связей в остатках каждого типа, каков тип структуры (разветвленный — неразветвленный). Для разветвленных полисахаридов, кроме того, известны степень разветвленности и структура точек ветвления. Это не мало, но это еш,е не структура. Что же еш е не известно Для всех типов полисахаридов — конфигурация гликозидных связей и последовательность расположения моносахаридных остатков в цепи, а также, за редкими исключениями, молекулярная масса. Для разветвленных полисахаридов к этому еш,е прибавляется вопрос о распределении остатков между основной и боковыми цепями, о длине боковых цепей и о положении различных точек ветвления (они могут располагаться в главной цепи, в первых от главной боковых цепях, во вторых от главной боковых цепях и т. д.). А для полисахаридов, имеюш,их неуглеводные заместители, надо еще установить положение этих заместителей. И только для одного — простейшего — типа полисахаридов мономерный анализ дает почти всю структурную информацию — для линейных регулярных полисахаридов, построенных из однотипно связанных остатков одного единственного моносахарида, каковы, например, целлюлоза и амилоза. [c.86]

    В результате анализа полисахарида при помощи такого частичного гидролиза мы получаем, как видно, надежную информацию о ближнем порядке моносахаридных остатков в цепи, т. е. о том, какой остаток с каким связан непосредственно. Мы, однако, остаемся в неведении относительно дальнего порядка, что применительно к йашему примеру сводится к вопросу о регулярности Строения цепи. Почему же мы не вправе решить его утвердительно нэ основании приведенных выше данных Сейчас разберемся. [c.90]

    Оценим сначала, каких результатов периодатного окисления следует ожидать для основных типов структуры полисахарида, которые можно умозрительно построить на основании данных мономерного анализа. При правильном чередовании 1—>3- и 1- 4-связанных остатков главными продуктами деградации должны быть глюкозил-зритрит и гликолевый альдегид, образующиеся в результате сохранения 1- -3-связанного звена и окисления двух примыкающих к нему остатков со связями 1- 4 (см. схему на с. 93). [c.92]

    Гликопиранозильный остаток, гидроксилы которого защищены от окисления ацетилированием, при обработке хромовым ангидридом в уксусной кислоте претерпевает окисление, при котором гликозидная связь превращается в сложнозфирную. Остаток моносахарида превращается при этом в остаток кетоальдоновой кислоты, В эту реакцию вступают только гликозильные остатки, у которых водород при гликозидном центре аксиален (см. схему на с. 97). Поэтому из двух возможных аномеров моносахаридного остатка внутри полисахаридной цепи окислению подвергается только один. Если далее такой окисленный полисахарид подвергнуть мономерному анализу, то по исчезновению тех или иных моносахаридов из гидролизата (по сравнению с исходным полисахаридом) можно судить о том, что именно эти остатки в полисахаридной цепи имели окисляемую конфигурацию (с аксиальным водородом при С-1), а сохранившиеся — неокисляемую (с экваториальным водородом при С-1). [c.96]

    Таким образом, спектроскопия ЯМР на ядрах "С позволяет не только определять природу, тип связи, конфигурацию гликозидных связей и количественное содержание моносахаридных остатков, входящих в состав биополимера, т. е. решать задачу мономерного анализа, но и устанавливать ближний порядок в расположении этих остатков в цепи, т. е. получать информацию, извлекаемую обычно из методов фрагментации. Принципиально важно, что такой анализ является неразрушающим. Поэтому весь полисахарид, использованный для съемки спектра, возвращается к исследователю в неизмененном виде. В свете сказанного можно полагать, что в ближайшем будущем этот метод исследования станет одним из ведущих для изучения полисахаридных структур и заставит классиче- [c.100]


Смотреть страницы где упоминается термин Полисахариды, анализ: [c.75]    [c.344]    [c.550]    [c.16]    [c.566]    [c.271]    [c.271]    [c.45]    [c.353]    [c.40]    [c.44]    [c.95]    [c.97]    [c.100]   
Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.322 ]




ПОИСК





Смотрите так же термины и статьи:

Выделение и анализ полисахаридов

Методы анализа перекрестно реагирующих полисахаридов

Полисахариды

Структурный анализ полисахаридов



© 2024 chem21.info Реклама на сайте