Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

бромный

    Бромное число, г брома/100 г, не [c.90]

    Бромное число, г Вгг на 100 г сырья Углеводородный состав, % (масс.) ароматические [c.24]

    Влияние характера сырья на выходы отдельных продуктов каталитического крекинга может быть иллюстрировано результатами переработки трех разных по групповому химическому составу частей тяжелого каталитического газойля [206). Этот газойль (удельный вес 0,945, бромное число 26,7, содержание серы 1,1% вес., температура застывания +27°, пределы кипения 282—458°) был разделен путем экстракции фурфуролом и последующей депарафи- [c.212]


    Бромное число. ....... Октановое число бензина 54,4 — 57,0 76.1 93 — [c.230]

    Плотность 914 кг/м , бромное число 8,5, коксуемость [c.27]

    Определение бромных чисел электрическим методом (ГОСТ 8997—59) [c.201]

    Принято считать, что содержание олефинов пропорционально бромному числу и вычисляется, исходя из этого предположения, для остатка мочевины как для к-парафи-новой и н-олефиновой фракции. Это позволяет определить содержание изопарафинов и циклопарафинов. [c.71]

    Масс-спектр Бромное число Силикагель [c.351]

    Промышленный каталитический крекинг протекает при давлениях несколько выше атмосферного. Как правило, процесс проводится в присутствии пара таким образом, что парциальное давление нефтяного сырья несколько меньше, чем общее давление. Необходимость проведения реакции при низком давлении объясняется данными, приведенными в табл. 6 и 7. Повышение давления приводит к увеличению отложения кокса и к снижению октанового числа бензина (рис. 2). При низких давлениях образуется большое количество газа, являющегося в значи-> тельной степени ненасыщенным. Содержание олефинов в бензине также высоко. С увеличением давления бромное число бензина постепенно снижается, что указывает на уменьшение содержания олефиновых углеводородов. Однако уменьшение количества олефинов не связано с наблюдаемым [c.147]

    Бромное число. ...... .......... Октановое число По исследовательскому методу в чистом 50,0 1.8 [c.186]

    В некоторых фракциях определялись содержание углерода и водорода (до и после гидрирования), молекулярный вес и бромное число. Это дало возможность вычислить средний состав полимеров. Парафины присутствовали в низкокипящих фракциях, но но мере увеличения температуры перегонки содержание их уменьшалось, а во фракциях, выкипающих при 175° и выше, они исчезали совсем. Олефинов присутствовало около 50% во фракциях, выкипающих до 185°. [c.189]

    Фракционироьапнем мирзаанской нефти (скв. № 99) была выделена фракция 70—95°, которая и представляла объект нашего исследования. После соответствующей промывки п сушки, фракция была перегнана в присутствии металлического натрия. Т. к. мы проводили количественное определение ароматических углеводородов 100% серной кислотой, поэтому предварительно необходимо было выяснить содержатся ли во фракции ненасыщенные углеводороды, чтобы избежать шибки прн определении количества ароматических углеводородов. Проба дала отрицательный результат иа содержание ненасыщенных углеводородов при действии на нее бромной воды, и слабого щелочного раствора перманганата калия. Концентрированная серная кислота незначительно действует на большую часть нафтеновых и парафиновых углеводородов. На этом свойстве основано определение ароматических углеводородов в нефти, для чего на.ми были приготовлены 100% серная кислота добавлением в обыкновенную серную кислоту кольбаумской SO3. [c.20]


    Дегидрогенизация считалась законченной, если при дальнейшем пропускании показатель преломления деароматизированного бензина не изменялся. Активность катализатора после опытов проверялась и оказалась почти прежней. Катализат не реагировал ни с бромной водой, ни со слабым щелочным раствором перманганата калия, что указывало на отсутствие в нем непредельных углеводородов. Объемный процент ароматических углеводородов, образовавшихся в. результате катализа, определялся взбалтыванием с двухкратным объемом 99% серной кислоты в течение 30 мин. Константы углеводородной смеси до и после катализа и удаления ароматических углеводородов, получившихся в результате катализа, сведены в табл. 1. Для выделения ароматических углеводородов, образовавшихся в результате катализа, сульфокислотный слой отделялся от смеси парафиновых и пента-метиленовых углеводородов, разбавлялся трехкратным объемом воды, и сульфокислоты гидролизовались по Кижнеру [11]. Ароматические углеводороды, получпвшиеся в результате гидролиза сульфокислот, отделялись от водного слоя, и после соответствующей промывки и сушки хлористым кальцием фракционировались над металлическим натрием кон-спгнти зт фракций даны в табл. 2. [c.63]

    Дегидрирование деароматизированных фракций проводили при 310—315°С, скорость подачи фракции над катализатором была равна 6 мл/ч.ас. Полнота дегидрирования проверялась измерением показателей лучепреломления ка-тализатов. В процессе дегидрирования катализатор характеризовался высокой активностью. Катализаты не содержали ценасыщенны.х углеводородов (не обесцвечивали бромную воду и слабощелочной раствор перманганата калия). Образовавшиеся в результате дегидрирования гексагидроарома-тических углеводородов, ароматические углеводороды удалялись из катализатов дымящей серной кислотой (уд. в. 1,865). [c.71]

    Катализаты не peaгиpoвaJИ ни с бромной водой, ни со слабым щелочным раствором перманганата калия, что ука- зывало на отсутствие непредельных углеводородов. [c.133]

    Материал для исследования получался нами фракционированием нефтей Грузии из различных скважин. Фракции 60—95°, 95-122°, 122—150° и 150—200° не давали качест-векпу1я реакщпо иа непредельные углеводороды, т. е. не реагировали И1Г с бромной водой, ни со слабым щелочны.м раствором перманганата калня. Исследуемые фракции промывались 73%-НОЙ серной кислотой, 10%-ным раствором щелочи, затем водой, сушились над хлористым кальцием и перегонялись в присутствии металлического натрия. Предварительная обработка бензино-лигроиновых фракций 73%-ной серной кислотой, щелочью и затем перегонка над металлическим натрием преследовали цель освободиться от нежелательных сернистых, кислородных и азотистых соединений, которые в качестве примесей могли присутствовать в исследуемых фракциях. Если бензино-лигроииовьте фракции не подвергаются предварительно такой обработке, то указанные выше неуглеводородные компоненты будут удаляться во время деароматизации фракции и последующей за ней промывкой щелочью и перегонкой над металлическим натрием. [c.151]

    После окончания дегидрогенизации вышеуказанной фракции, активность катализатора проверялась и она оставалась почти прежней, Катализаты не реагировали ни с бромной водой, ни со слабым щелочным раствором перманганата калия, что указывало на отсутствие непредельных углеводородов в катализатах, Катализат сушился и перегонялся над металлическим натрием, затем определялись константы и производилось его деароматнзация, как это показано выше, Деароматизированный катализат после соответствующей промывки и сушки перегонялся над металлическим иатрнем и определялись е1о физические свойства. Вычисление содержания циклопентановых углеводородов производилось по максимальной анилиновой точке деароматизированного катализата и перечислялось на исходную фракцию. Данные, полученные иами, ио содержанию химического состава фракции 60—150° мирзаанской нефти, приведены в табл. 6. [c.227]

    В свободном состоянии HBrOj не выделен, получены его водные растворы. По силе бромная кислота приближается к хлорной. По окислительной активности она сильнее хлорной и йодной кислот. [c.308]

    Химическая стабильность бензинов определяет способностьпро — тивостоять химическим изменениям в процессах хранения, транспортирования и длительной их эксплуатации. Для оценки химической стабильности нормируют следующие показатели содержание факти — ческих смол и индукционный период. О химической стабильности бензинов можно судить по содержанию в них реакционноспособных непредельных у1 леводородов или по йодному и бромному числам. Непредельные углеводороды, особешю диолефиновые, при хранении в присутствии кислорода воздуха окисляются с образованием высокомолекулярных смолоподобных веществ. Наихудшей химической стабильностью обладают бензины термодеструктивных процессов — термокрекинга, висбрекинга, коксования и пиролиза, а наилучшей — бензины каталитического риформинга, алкилирования, изомеризации, [c.110]

    Автобензины каталитического крекинга имеют легкий фракционный состав и в нормальных условиях хранения достаточно химически стабильны. Бензины с концом кипения 2(Ю—210° и упругостью наров но Рейду 500—520 мм рт. ст. содержат ие менее 40% фракций, выкипающих до 100°, и имеют бромное число, обычно не превышающее 100. Удельный вес таких бензинов 0,730—0.745. Для примера в табл. 45 помещены результаты анализов нескольких образцов бензина с упругостью паров 517 жл. рт. ст. Дебута- [c.229]


    Дополнительные характеристики данного образца полимер-бензина бромное число 134, смол в медной чашке 5 мг на 10и мл беязина, октановое число по моторному методу 82,5 (без ТЭС), индукционный период минямум 720 МЕН. [c.232]

    Метод определения серы в бомбе оспован на сжигании навески испытуемого нефтепродукта в калориметрической бомбе в атмосфере кислорода. Образовавшиеся соединения серы растворяются в воде. Образующиеся сульфиды окисляются бромной водой в сульфаты. При воздействии хлористого бария выпадает осадок сернокислого бария, который прокаливают и взвешивают. [c.187]

    Определение бромного яисла (ГОСТ 2706-63) [c.201]

    В бензинах и керосинах прямой гонки олефины, или ненасыщенные углеводороды, в основном отсутствуют. Йодные и бромные числа этих бензинов обычно приближаются к нулю. Однако при помощи фракционной перегонки и адсорбции Путшер [26] выделил из легкого брэдфордского (Пенсильвания) бензина узкую фракцию, имеющую бромное число выше 148. [c.26]

    Исследование углеводородов с прямой цепью методом инфракрасной спектроскопии показало, что непредельные соединения представляют собой олефины с двойной связью на конце, а также с двойной связью внутри цепи в траке-положении. Сопряженные диолефины не были обнаружены. Достаточное согласие, полученное для значений, рассчитанных из данных по инфракрасной спектроскопии для суммы олефинов с двойной связью на конце и с двойной связью внутри цепи в транс-положении, и значений, рассчитанных из бромных чисел для всех олефинов, указывает, что другие типы, как несопряженные диолефины или олефины с двойной связью внутри цепи в цис-положошш, присутствуют только в очень малых количествах. Соединения такого типа не могут быть обнаружены методом инфракрасной спектроскопхш. Эти результаты указывают на неполноту достижения термодинамического равновесия, хотя олефины с двойной связью внутри цепи в цис- 0 траис-полотениы присутствуют приблизительно н равных количествах. [c.66]

    Для крекинг-лигроинов, содержащих олефины, удовлетворительны результаты дает уравнение Гроссе и Вакгера [291. Обозначая дисшцюию коэффициеита преломления (/ —С) символом <5, а бромное число символом получаем [c.264]

    Этот метод требует следующих определений содержания углерода и водорода, коэффициента преломления, плотности, удельрой дисперсии, молекулярного веса и при наличии олефинов бромного числа. По этигл данным, пользуясь довольно сложным методом вычисляются распределение углерода и содержание колец. [c.374]

    При 371° и давлении 70,6 кг/см этилеп полимеризуется в течение часа с образованием светлого масла, вык1шающего в пределах 20—300°, с бромным числом 1,29 г/г, причем около 50% его выкипает до 150°. Наблюдалась тенденция к повышению среднего молекулярного веса жидкого продукта с увеличением температуры, времени контакта илп давления, однако увеличение молекулярного веса идет не так быстро, как рост выхода продуктов- реакции. [c.187]

    Моноолефиновая природа этих полимеров была доказана по показателям, предлон енным Ипатьевым [24] для полимеров пропилена, а именно почти полная растворимость в 95%- гой серной кислоте при 0° каталйти-ческое гидрирование в парафины бромные числа, соответствующие таковым, вычисленным для моноолефинов отношение углерод водород, соответствующее формуле СпЛ п- [c.198]

    В присутствии хлористого алюминия нзобутплен реагирует почти мгновенно [201 при комнатной температуре с образованием бесцветного масла и вязкого телпю-красного масла, не растворимого в бесцветном продукте. Бесцветное масло представляет собой смесь углеводородов с бромным числом от 1 до 15 и средним молекулярным весом 200, являясь, таким образом, более высококинящим продуктом, чем бензин. Хлористый алюминий также вызывает быструю полимеризацию изобутилена при —78°, нри этом образуется слегка окрашенное твердое вещество с бромным числом 0,5. [c.201]

    Когда хлористый алюминий применялся в виде суспензии в пентане как разбавихеле [72j при температуре в пределах от —78 " до +16°, полимеризация изобутилена проходила иногда взрывообразно при —78°, но при температурах в пределах от —40° до +15° полимеризация проходила умеренно с образованием жидких углеводородов, включая алифатические олефины со сравнительно низким бромным числом и высококипящие циклические углеводороды. [c.202]


Смотреть страницы где упоминается термин бромный: [c.89]    [c.236]    [c.306]    [c.306]    [c.307]    [c.138]    [c.144]    [c.307]    [c.248]    [c.38]    [c.38]    [c.65]    [c.67]    [c.191]    [c.351]    [c.355]    [c.374]    [c.375]    [c.199]   
Электрохимическая кинетика (1967) -- [ c.505 ]




ПОИСК







© 2025 chem21.info Реклама на сайте