Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цирконий карбонат

    В цитированных статьях достаточно подробно приведены результаты исследований целого ряда объектов гидроокисей кальция, бария, магния, алюминия, циркония, карбоната бария и других. Здесь мы дадим в качестве иллюстрации еще два примера. На электронномикроскопических снимках рис. 1 [c.343]

    Нет (исходный карбонат). . Окись алюминия Окись хрома. . Окись циркония.  [c.28]

    Методика определения. Навеску 0,1—0,2 г анализируемого материала с содержанием 0,1—0,5% циркония помещают в платиновую чашку, в которую предварительно вносят 5 г смеси карбоната и тетрабората натрия (3 2), перемешивают и сплавляют в муфельной печи [c.375]


    Порошкообразная двуокись циркония легко растворяется в кислотах, образуя соли четырехзарядного циркония. Сплавленная же растворяется только в царской водке и в плавиковой кислоте. При сплавлении со щелочами или карбонатами щелочных металлов она образует соли циркониевой кислоты. В накаленном состоянии излучает очень сильный свет почти [c.300]

    Технология соединений циркония. Промышленные способы раз ложения циркона основаны на сплавлении его со щелочами или содой спекании с содой, известью, известняком или мелом, кислыми фтори дами или комплексными фторосиликатами щелочных металлов. Наи большее распространение получили методы сплавления с едким нат ром, спекания с мелом и гексафторосиликатом калия. Способы разло жения циркона сплавлением со щелочами, спеканием с карбонатами щелочных и щелочноземельных металлов могут быть объединены в одну группу вследствие сходства механизма реакций, протекающих при вскрытии, сходства образующихся продуктов и общности способов выделения циркония из растворов. Широкое распространение получило хлорирование, обладающее рядом преимуществ по сравнению с перечисленными выше способами. [c.313]

    Сплавление и спекание циркона со щелочами и карбонатами щелочных и щелочноземельных металлов. Твердофазные реакции. Твердофазными называются реакции, если в них участвует хотя бы одна твердая фаза. Если один из компонентов реакции находится в расплавленном состоянии (чаще это вскрывающий реагент), то процесс называют сплавлением. Спекание осуществляется нагреванием смесей взаимодействующих твердых кристаллических веществ ниже температуры их плавления, хотя, строго говоря, термин спекание относится к явлениям, происходящим при нагревании порошков (однокомпонентных или многокомпонентных) и связанным со свариванием отдельных зерен, уменьшением пористости и т. д. [c.313]

    Существенное значение в топливном элементе имеет состав электролита. При низких температурах электролитом обычно служат растворы кислот и щелочей для высокотемпературных элементов применяют расплавы солей, например расплавленные карбонаты щелочных металлов. Для температуры выше 1000° С используют твердые электролиты, в которых ток переносится отрицательно заряженными ионами кислорода (двуокись циркония и некоторые другие сложные системы). Электроды высокотемпературных элементов чувствительны к отравлению это позволяет расширить круг материалов, применяемых для электродов, и снизить требования к очистке топлива. Но при этом из-за высоких температур резко увеличивается коррозия электродов и других деталей топливного элемента. По этим причинам срок службы высокотемпературных элементов исчисляется месяцами, тогда как низкотемпературные элементы работают значительно дольше. [c.493]


    В литературе описывается синтез цирконата лития сплавлением карбоната лития с двуокисью циркония, но этот процесс требует сравнительно высоких температур, при которых осложняется выбор материала для реакционных сосудов [4, 5], [c.50]

    Иногда для определения тория или циркония применяют 0,05 или 0,025 7о-ные растворы арсеназо III. Для определения циркония в свинцовых и титановых концентратах готовят раствор 100 мг арсеназо III растворяют при нагревании в 60—70 мл воды в мерной колбе вместимостью 100 мл и доводят раствор до метки 2 н. раствором НС1. Для определения циркония в сталях 0,1 г арсеназо III растворяют в мерной колбе вместимостью 100 мл в неболь-щом количестве воды, добавляют по каплям 10 7о-ный раствор карбоната натрия до наступления голубого окрашивания и нагревают. Затем добавляют по каплям НС1 (1 1) до перехода окраски в красно-фиолетовую и разбавляют водой до метки. [c.118]

    Отделение продуктов деления от плутония основывается на том, что, если данный элемент — продукт деления сходен с одной из валентных форм плутония, то он будет отличаться от плутония в других валентных состояниях. В зависимости от числа повторяющихся циклов можно очистить плутоний до необходимой чистоты. Из приведенных в табл. 18 и 19 данных следует, что для использования сульфата калия, фосфорной, фтористоводородной, фитиновой и фениларсоновой кислот для извлечения и очистки плутония необходимо введение носителя (соли циркония, лантана, висмута и др.). При осаждении карбонатов или ацетатов из растворов, содержащих уран, сам уран служит носителем. [c.266]

    Гидроокиси рубидия и цезия — весьма активные в химическом отношении вещества. На воздухе они быстро расплываются и, поглощая двуокись углерода, постепенно переходят в карбонаты при 400—500° С взаимодействуют с кислородом, образуя перекиси [99], и с окисью углерода, образуя формиаты и оксалаты [6, 93]. Расплавленные гидроокиси рубидия и цезия разрушающе действуют на железо, кобальт, никель, платину, изделия из корунда и двуокиси циркония и постепенно растворяют даже серебро и золото. Наиболее устойчивыми в такой среде являются изделия из родия и сплавов родия с платиной. [c.89]

    Б. Приготовление ацетилацетоната циркония. 5,8 г кристаллической хлорокиси циркония растворяют в 50 мл еоды и раствор охлаждают до 15°. Добавляют 10 г ацетилацетона к 50 мл 10-процентного раствора карбоната натрия и перемешивают смесь до исчезновения верхнего слоя. После охлаждения раствора в холодной воде и фильтрования его постепенно добавляют при перемешивании к раствору хлорида. Реакционную смесь охлаждают льдом в течение 1 часа. Образовавшийся кристаллический [c.119]

    В качестве носителей чаще всего применяются такие соединения. Которые в дальнейшем не мешают определению или легко удаляются. Хорошими носителями для выделения следов урана являются гидроокиси многих металлов, обладающие рыхлым строением и большой поверхностью. Гидроокиси железа, алюминия, кальция, маг-йия, олова, тория, циркония и титана были рекомендованы для соосаждения с ними малых количеств урана [8, 19]. В качестве носителей для отделения следов урана могут применяться также перекись тория, карбонат бария, фторид кальция [8]. Соосаждение с органическими осадками также предлагалось для выделения следовых количеств урана [126]. [c.283]

    ГЛАЗУРЬ (нем. Glas — стекло) — тонкое стекловидное покрытие на керамических изделиях, получаемое нанесением на поверхность изделия кремнезема и глиноземно-щелочных силикатов и оксидов металлов с последующим обжигом в печах при температуре до 1400° С. Глазурованные керамические изделия водонепроницаемы, устойчивы против действия кислот и щелочей, имеют привлекательный внешний вид. Сырьем для изготовления Г. служат кварц, полевой шпат, карбонаты кальция или магния, каолин, сода, поташ, селитра, бура, хлорид натрия, свинцовый сурик и др. Для окрашивания Г. в их состав вводят оксиды или соли кобальта, меди, хрома, марганца, железа и др., которые при сплавлении растворяются в Г. с образованием окрашенных силикатов. Для получения Г. белого цвета добавляют 5—10% криолита, диоксида олова или циркония. [c.76]

    Карбонат лития LI2 O3 — бесцветное мелкокристаллическое вещество, призматические кристаллы которого принадлежат к моноклинной сингонии (а = 8,39, h = 5,00, с = 6,21 А, = 114,5° [42]) плотность 2,11 г/см (0°) [181, теплота образования ЛЯ°2Э8 = = —290,54 ккал/моль [43]. Литературные данные о температуре плавления Lia Og противоречивы, так как вблизи плавления (или одновременно с ним), он начинает диссоциировать (рис. 4), образуя окись лития Lijo, которая в расплаве Ы..,СОз очень агрессивна (разрушает корунд, алунд, двуокись циркония и платину). По-видимому, 732° — наиболее надежная температура плавления Li, O, [10 . [c.14]

    Цирконаты и гафнаты. При сплавлении и спекании двуокисей циркония и гафния с гидроокисями, карбонатами и другими солями щелочных, щелочноземельных, редкоземельных и некоторых других металлов образуются многочисленные цирконаты и гафнаты. Как указывалось ранее (стр. 221), соединения этого типа правильнее относить к сложным окислам. С щелочными металлами образуются соединения типа тМс2 0-п1г02 (НЮо) (где т = I, п = I 3). Цирконаты и гафнаты щелочных металлов гидролизуются водой, однако гидролиз может тормозиться вследствие образования на поверхности нерастворимых пленок гидроокисей. Разбавленными кислотами раз- [c.284]


    Карбонаты. Ион СОз обладает достаточно высокой способностью к комплексообразованию с цирконием и гафнием. В определенных условиях он может замещать сульфатогруппу. Но в отличие от сульфатных соединений циркония средние карбонаты получить нельзя. Все карбонатные соединения циркония и гафния плохо растворяются в воде и довольно хорошо — в кислотах. [c.288]

    Носителями катализаторов могут служить тайже асбест, пемза, кизельгур, сйликагель, кремневая кислота, активные угли, а также окислы, карбонаты и сульфаты магния, кальция, бария, цинка, алюминия, жолеза, хрома и циркония. Метод получения пал ладнее ого катализатора на сульфате бария приведен Мозинго [104]. [c.33]

    Хлорирующий обжиг применяют для перевода ценных компонентов руды в легкорастворимые или легколетучие хлориды (напр., при произ-ве титана и циркония). В результате декарбонизир. обжига удаляют карбонаты Са, Мо, Ва (напр., при обжиге известняка, доломита, магнезита, фосфорита). Кальцинирующий обжиг при.меняют для удаления конституц. влаги и СО (при произ-ве соды, извести и т. д.). Дистиллед. обжиг-отгонка в парообразном состоянии из руды или ее концентратов ценных составляющих (напр., 8Ь, Н , Аз), к-рые затем конденсируют. [c.505]

    Первые систематические исследования процессов металлотермического восстановления редких щелочных металлов были проведены русским химиком И. Н. Бекетовым [18, 19], получившим металлические рубидий и цезий действием алюминия на RbOH и tsOH. В дальнейшем в качестве исходных веществ для получения лития, рубидия и цезия была опробована большая группа соединений (галогениды, гидроокиси, карбонаты, сульфаты, хроматы, цианиды, алюминаты, силикаты и бихроматы) и значительное количество восстановителей (магний, кальций, барий, натрий, алюминий, железо, цирконий, кремний, углерод, титан). [c.385]

    Аммиак и едкие щелочи [405, 406, 1865] почти не имеют практического значения для отделения тория от р. з. э. При их использовании получается высокая концентрация гидроксильных ионов даже в разбавленных растворах, что приводит к образованию очень нежелательного местного избытка реагента, вызывающего одновременное осаждение и гидроокисей р. з. э. Более пригодным для этой цели оказалось применение окислов и карбонатов некоторых металлов, например, 2пО, СиО, РЬО, 2пСОз и РЬСОз, создающих значительные концентрации гид- роксильных ионов. Использование перечисленных окислов и, карбонатов [410, 412, 763, 778, 864, 1487, 1543], а также закиси Меди и карбоната марганца [1543] обеспечивает количественное отделение тория от р. з. э. Применению любого из этих оса-дителей должно предшествовать отделение циркония и восстановление четырехвалентного церия. Определение обычно заканчивается осаждением тория в виде гидроокиси или оксалата. Однако этот метод не нашел широкого использования вследствие продолжительности и необходимости дополнительного отделения введенных ионов металла. [c.95]

    Осаждение тория в виде иодата из 3%-ного азотнокислого раствора в присутствии перекиси водорода обусловливает предварительное отделение тория, титана и циркония от других элементов, сопутствующих ему при осаждении карбонатом. При этом полнота осаждения малых количеств иодата торип достигается лишь при низкой кислотности раствора, когда содержание азотной кислоты не превышает 57о- Цирконий отделяют осаждением в виде фосфата из 15%-иого раствора НЫОз- Вместе с фосфатом циркония удаляются также оставшиеся количества 1 Ъ и Та. [c.176]

    При осаждении гидроокиси тория носителями служат гидроокиси лантана, циркония или железа. Сообщают [945] об отделении UXi(Th" ) от урана выщелачиванием последнего карбонатом аммония из осадка, полученного при совместном осаждении гидроокиси железа и уранага аммония. Для выделения малых количеств тория из сильнокислых растворов, содержащих уран, а также для отделения от циркония , который используют в качестве носителя в концентрации 0,1 —1,0 мг/мА при осаждении иодата тория, рекомендуют осаждать фторид тория на фториде лантана. При выделении иодата тория из сильнокислых сред и промывании его раствором, содержащим иодат, достигается отделение от урана. р. 3. э. (Се предварительно восстанавливают до Се перекисью водорода) и актиния [5]. Иодат циркония растворяют в HNO3 в присутствии сернистого ангидрида и переосаждают затем в виде гидроокиси после удаления иода кипячением раствора. [c.228]

    Определение урана в хлорнокислых растворах [916, 9361 удобно тем, что в широком интервале концентраций хлорной кислоты от минимальных ее количеств до 65% (7,4 М) оптическая плотность при 417 и 420 перхлората уранила не меняется [916] (рис. 5). Перхлораты алюминия, железа, тория и циркония в количествах соответственно 0,1 0,2 1, 0 2,0 гв2Ъмл раствора не мешают определению, так как не поглощают в пределах 415— 420 ммк. Влияние других ионов, таких как фториды, хлориды, карбонаты, сульфаты, существенно и они должны быть устранены (рис. 6). [c.110]

    Для разложения руд и пород можно использовать сплавление их со щелочами, NagOg, карбонатами и др. плавнями [143] так, например, при определении урана в циркониевых минералах, в частности в цирконе, образец разлагают сплавлением со смесью ЫааСОз и Na2 40, [441]. [c.345]

    Оксиды ЭО2 — термически устойчивые вещества, которые можно перевести в раствор либо действием НР, либо сплавлением со щелочами, карбонатами и дисульфатами. Из водного раствора могут быть осаждены Т10(0Н)2 2Н2О и полигидраты оксидов циркония и гафния состава ЭО2 иНгО последние при небольшом нагревании переходят в ЭО(ОН)2. Все гидроксиды амфотерны с преобладанием основных свойств, возрастающих от титана к гафнию. [c.244]

    Ход анализа. Пробу стали (0,1 г) поместите в маленькую чашку и растворите в разбавленной серной кислоте в полученном растворе окислите железо и вольфрам несколькими каплями азотной кислоты, раствор выпаривайте (под тягой) до выделения ЗОз (белые пары). По охлаждении добавьте 6 мл воды и нагрейте. Выделившуюся вольфрамовую и кремневую кислоты отделите центрифугированием. Центрифугат нагрейте до кипения, добавьте 0,1 г сульфита натрия для воссгановления железа и кипятите 10 мин. В горячий раствор добавьте 3—4 капли перекиси водорода и 1 мл 30%-ного раствора фосфата натрия и перемешайте в присутствии циркония появляется белый илистый осадок фосфата циркония. Осадок после центрифугирования промойте 3%-ным раствором нитрата аммония. Для проверки наличия циркония промытый осадок сплавьте в ушке платиновой проволоки с карбонатом натрия, плав растворите в воде, центрифугируйте и отделите осадок от раствора. После промывания 1 %-ным раствором ЫааСОз растворите осадок в 2—3 каплях горячей соляной кислоты (1 1), прибавьте 2 мл воды, 1—2 капли спиртового раствора ализарина и слегка нагрейте. При наличии циркония появляется характерное краснофиолетовое окрашивание или такого же цвета осадок. Для обнаружения циркония можно воспользоваться также капельной реакцией с р-диметиламино-азофениларсоновой кислотой (см. стр. 157). [c.161]


Смотреть страницы где упоминается термин Цирконий карбонат: [c.726]    [c.454]    [c.726]    [c.726]    [c.454]    [c.25]    [c.43]    [c.144]    [c.4]    [c.288]    [c.189]    [c.224]    [c.387]    [c.86]    [c.104]    [c.117]    [c.283]    [c.120]    [c.124]    [c.147]    [c.107]   
Вредные химические вещества Неорганические соединения элементов 1-4 групп (1988) -- [ c.448 ]




ПОИСК







© 2025 chem21.info Реклама на сайте