Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анодная пассивация окислов

    В большинстве работ, посвященных механизму защиты железа от коррозии фосфатами, высказывается мнение, что фосфатный слой осаждается из электролита, а пассивирующий окисел возникает за счет взаимодействия металла с кислородом. Роль вторичного осажденного из электролита фосфата заключается в снижении скорости растворения окисного слоя. В работах [47] было показано, что в присутствии фосфатов на анодной поляризационной кривой имеется два потенциала пассивации один из них смещен на 0,2 В в отрицательную сторону по сравнению с потенциалом обычной пассивации, наблюдаемым в боратном буфере, не содержащем фосфатов. Из этого делается вывод, что в фосфатных растворах переходу железа в пассивное состояние предшествует специфическая пассивация, обусловленная вторичным осаждением фосфата металла из раствора. Накопление на поверхности стали плохорастворимого фосфата железа создает благоприятные условия для обычной окисной пассивации. [c.66]


    Пассивирующие свойства нитрит-ионов большинство авторов связывает с образованием на поверхности стали окисной пленки РбгОз, которая затрудняет процесс анодного растворения. Наличие такого окисла было подтверждено экспериментально. Спорным остается лишь вопрос о его происхождении. Согласно точке зрения, изложенной выше, пассивирующий окисел появляется па поверхности металла в результате окисления низшего окисла з более высокий кислородом воды. Нитрит-ионы, адсорбируясь на поверхности, уменьшают лишь свободную энергию системы и этим облегчают пассивацию. [c.179]

    В большинстве современных исследований принимается, что пассивирующий окисел является непосредственным продуктом обычной анодной электрохимической реакции, протекающей с участием атомов металла и молекул воды. Однако вычисленные нормальные потенциалы реакций образования на титане всех известных его окислов, в том числе ТЮз, значительно отрицательнее наблюдаемого потенциала пассивации титана в 2 н. НаЗО . Вероятно, причину такого [c.18]

    Проведенные опыты дают основание считать, что как титан, так и титан с гидридным слоем в области активного анодного растворения окислены, причем степень окисления возрастает при смещении потенциала в положительном направлении. Вблизи потенциала пассивации на внешней поверхности образца начинает формироваться малорастворимый окисел, по-видимому, ТЮа. [c.22]

    После достаточно долгой анодной поляризации нри постоянном потенциале происходит собственно пассивация— новое замедление процесса (см. рис. 76, область кривой б). На этот раз резко замедляется электрохимическая стадия, по-видимому, из-за адсорбции кислорода на поверхности слоя Ag 20 [358]. При пропускании постоянного анодного тока в этот момент возрастает потенциал и затем начинается образование AgO — так называемая вторая ступень зарядки серебряного электрода аккумулятора. В момент этого возрастания потенциала электрод чувствителен к свету. Освещение границы раствор — окисел приводит к разрушению пассивирующего слоя и снижению потенциала до потенциала первой ступени [359]. [c.191]

    Известно [151], что естественный окисел, который образуется на поверхности германия, достаточно химически активен и поэтому его нельзя использовать для пассивации поверхности германия и в качестве маски при диффузии. Двуокись германия Ge()2 находится обычно в аморфном или кристаллическом состоянии с решеткой гексагональной формы. Имеется также разновидность двуокиси германия, имеющая кристаллическую решетку тетрагональной формы, которая является перспективной при изготовлении германиевых полупроводниковых приборов [154]. Одним из способов получения таких пленок двуокиси германия на поверхности монокристаллических пластин является анодное окисление в 0,25 N растворе ацетата натрия в ледяной уксусной кислоте с последующей обработкой пластин в керамическом тигле, содержащем смесь промышленной двуокиси германия и 1 вес.% карбоната лития в атмосфере воздуха с относительной влажностью около 40% при температуре 700—900° С [151]. [c.453]


    В широком смысле окислительными являются все анодные процессы с участием металлов. Однако под термином анодное окисление в приложении к металлу обычно понимают анодное образование заметного количества твердого металлического окисла или гидроокиси на поверхности металла. Примером может служить хотя бы анодированный алюминий и формованный свинец. Если в результате анодной поляризации образуется твердое металлическое соединение, но не окисел, то говорят, что металл сулфатирован , хлорирован или фосфа-тирован для каждого случая соответственно общепринятого термина, объединяющего такого рода процессы, не существует. Часто рассматриваются случаи, когда твердый продукт не обладает адгезией к металлу. Если отвод катионов от металлической поверхности существенно замедляется в результате образования анодной пленки твердого продукта, почти непроницаемой для катионов, то говорят, что наступила анодная пассивация . Под общим названием анодное растворение понимают обычно анодные процессы, приводящие в конечном итоге к переходу металла в растворенные металлические соединения. При этом металл входит в состав гидратированных катионов, комплексных катионов или анионов (включая оксианионы) или незаряженных молекул. Анодное глянцевание и анодное полирование рассматривались как частные случаи анодного растворения. Применяемая терминология (и классификация) несовершенна. [c.284]

    Например, при саморастворении титана в концентрированной серной кислоте нами обнаружен на его поверхности окисел TI3O5 [48],. а при окислении на воздухе при комнатной температуре образуется окисел TiO [148]. Состав окисных пленок, образующихся на титане при самопассивации в растворах, а также при анодной пассивации при не слишком высоких положительных потенциалах один и тот же. Этот результат подчеркивает правильность сделанного в последнее время в литературе вывода об отсутствии принципиальной разницы между анодной и химической пассивацией металлов [135], [149]. [c.110]

    Таким образом, мы привели примеры двух крайних типов пассивации— типа, при котором явление заключается в образовании простого блокирующего или изолирующего слоя соли или окисла, имеющего характер фазы, и типа адсорбционного, при котором пассивирующий слой может состоять из 1—2 молекулярных слоев окисла и даже из отдельных атомов пассиватора, не образующих сплошного слоя на поверхности. Теперь я кратко остановлюсь на значении третьего случая, являющегося комбинацией первых двух. В качестве примера можно привести явление анодной пассивации железа в горячей концентрированной щелочи, исследованное В. В. Лосевым и автором. Повидимому, пассивирующий окисел в этом случае паходится в равновесии с растворенным в ще.чочи трехвалентпым же- [c.144]

    В последнее время для катодной защиты морских сооружений широкое применение нашли аноды из свинца, легированного добавками серебра, сурьмы, висмута, теллура, которые способствуют образованию на поверхности анода пленки перекиси свинца. Этот окисел, обладая высокой проводимостью, препятствует пассивации св инца и обеспечивает прохождение така катодной защиты без особого увеличения напряжения станции. Однако при высокой плотности тока анодная поляризация свинца приводит к утолщению пленки и, как следствие, к образованию пузырей, при разрушении которых образуется хлористый свинец, усиливающий растворение анода на обнажившихся участках. [c.200]

    Все тугоплавкие металлы обладают отрицательными нормальными электродными потенциалами и располагаются в ряду активности левее водорода. Высокая коррозионная стойкость тугоплавких металлов обусловлена образованием на поверхности плотной, химически устойчивой пленки, представляющей собой окисел данного металла для Та, ЫЬ, Мо, 7г — это Та Об, N52 05, МоОз, 2г2 0 и т.д. Так, например, тантал без окисной пленки обнаруживает сильную анодность по отношению к большинству металлов в течение нескольких секунд после погружения пары в электролит, но образование на его поверхности окисла Таг 05 под действием анодного тока быстро изменяет потенциал тантала на обратный и тантал становится катодом (рис. 48). Этот процесс аналогичен процессу пассивации алюминия, но протекает быстрее (рис. 49). [c.56]

    Депассивирующее или затрудняющее пассивацию влияние некоторых анионов также нельзя объяснить, считая причиной пассивности фазовый окисел. Большое число исследований показывает, что присутствие некоторых ионов в растворе либо тормозит, либо ускоряет анодный процесс. Рассмотрим некоторые данные. На рис. VI,36 [45] показано активирующее влияние S0 на железо. Кривая 2идет сначала сходно с кривой ф в обоих случаях близок, но 1, увеличивается при добавке S0 ". Следовательно, S0 принимает определенное участие в анодном растворении железа. Уменьшение тока после ф говорит об адсорбции, тормозящей анодный процесс (допустим, что адсорбируются ионы ОН ). При дальнейшем увеличении потенциала ток в присутствии S0 " снова возрастает (участок I). Возможно, что здесь пассивирующие ионы вытесняются ионами SO4". При этом поверхность электрода подвергается точечному [c.233]


    Как правило, окислы и гидраты окислов высшей валентности менее растворимы, чем соответствующие низковалентные соединения. Пассивация или образование пленки для металлов, дающих такие окислы и гидроокиси, протекает в общем случае легче этому благоприятствует также повышение анодного потенциала. Однако в некоторых случаях окисел высшей валентности хорошо растворим Б воде. Такие металлы, как ванадий [34], хром [10] и марганец [18], легко пассивирующиеся или образующие пленку при небольших анодных поляризациях, снова начинают активно растворяться при высоких положительных потенциалах с образованием растворимых ванадиевой, хромовой и марганцевой кислот. [c.289]

    Представляет интерес точка зрения Бок-риса, Редди и Pao [15] на механизм пассивации никеля в кислых растворах. Они предположили, что хотя формирование сплошной поверхностной окисной пленки и служит необходимой предпосылкой, оно само по себе не является достаточным условием для возникновения пассивности. Пассивность, согласно этим авторам, связана с повышением электронной проводимости окисной пленки, происходящим вследствие изменения стехиометрии окисла, т. е. при его дальнейшем окислении. Повышение электронной проводимости уменьшает напряженность электрического поля в пленке, а это снижает скорость перехода ионов металла через пленку и тем самым скорость растворения металла. Считается, что на сталии, предшествующей пассивности, пленка состоит из Ni(0H)2, образованного в процессе растворения — осаждения, механизм которого был впервые предложен Мюллером [19] много лет назад. Пассивация происходит благодаря превращению Ni (ОН) 2 в нестехио.метрический высший окисел NiOj 5 j 7. Исследования рентгеновской дифракции в сочетании с электрохимическими экспериментами [20] также показывают, что при анодном окислении никеля возникает нестехиометрический окисел состава Ni0 j.  [c.139]

    С(1 в (М(0Н)2 и в процессе катодного восстановления С(1(0Н)2 до металлического С(1. Если объемный окисел Сс1(0Н)2, выпадая из раствора в результате 1 идролиза комплексного аниона кадмия, не будет создавать на поверхности металла плотного изолирующего слоя, то анодное растворение кадмия в щелочи должно было бы происходить до полного механического разрушения электрода. Однако в действительности, судя по кривым зависимости потенциала от количества прошедшего электричества, растворение кадмия происходит с постоянной скоростью и при постоянном потенциало лишь до определенного предела, завпсяхцего от концентрации щелочи и плотности тока. Затем наступает резкая пассивация электрода, не связанная с какими бы то ни было нарушениями механической прочности электрода. Очевидно, в процессе анодной поляризации, наряду с растворением кадмия, на поверхности электрода происходят изменения, в результате которых в некоторый критический момент прекращается дальнейший процесс анодпого растворения. Такими изменениями могут быть образованио пассивирующего слоя в результате накопления гидроокиси па поверхности металла или в результате образования поверхностного окисла. [c.572]

    Все вышеизложенное позволяет представить механизм действия кадмиевого электрода следующим образом при анодной поляризации кадмия одновременно происходят два процесса — растворение кадмия с образованием аниона, гидролизующегося с выпадением объемного окисла, и постепенное заполнение поверхности металлического электрода пассивирующим окислом. Пассивирующий окисел, достигнув предельной толщины, соответствующей не более чем песколь ШМ монослоям, настолько меняет состояние поверхности растворяющегося металла, что дальнейшее растворение становится невозможным и наступает пассивность. Кинетика накоиления пассивирующего окисла зависит от концентрации электролита и плотности анодного тока. Соответственно, от этих же факторов аналогично меняется и выход анодного процесса на электроде. Таким образом, механизм пассивации кадмия в щелочи оказывается аналогичным механизму пассивации железа в щелочном растворе [3]. [c.577]

    Разрушение пленок при высоких потенциалах. Если вообще при низких плотностях тока происходит нормальное растворение анода и пассивация его при высоких плотностях тока, то все же, если э. д. с. делается слишком высокой, пленка, благодаря которой достигается пассивность, неизбежно разрушается, и даже если она быстро восстановится, все же происходит значительное распыление (дезинтеграция) металла. Вет нашел, что такое разрушение может произойти не только в щелочном или нейтральном растворе соли, но иногда (например с золотыми и платиновыми анодами при 110 V) в разбавленной серной кислоте. Ток быстро начинает колебаться, падая практически до нуля, когда анод покрыт изолирующим кислородным слоем, но подпрыгивая снова, когда окисная пленка сбрасывается, вероятно, благодаря электрической пульсации. Диспергирование окиси и металла обнаруживается в том случае, если раствор щелочный или нейтральный в кислом растворе окисел растворяется, и остается взвесь металлических частиц. При такой комбинации металла и жидкости, которые неблагоприятны для пленкообразования, характерно спокойное анодное растворение при низких значениях э. д. с. и пассивность при высоких э. д. с. Однако и обратное соотношение должно быть действительным если комбинация металла и жидкости благоприятна в смысле образования защитной пленки даже в отсутствии тока, то при небольшой э. д. с. металл останется пассивным (если ток идет, то он будет расходоваться на образование кислорода) и только когда э. д. с. станет настолько большой, что разрушение пленки анионами происходит быстрее, чем ее восстановление, начнется сильное коррозионное воздействие на металл. Е. Мюллер и Швабе изучая ванны со свинцовыми анодами в насыщенных перхлоратом свинца растворах, нашли, что при низких значениях э. д. с. идет очень маленький ток, но когда э. д. с. возрастает до 35 V, анодная пленка неожиданно разрушается, и ток возрастает в 400 раз по сравнению с его предыдущим значением так как здесь нет выделения кислорода, ток, повидимому, полностью расходуется на коррозию. Исследования Бреннерта с оловянным анодом в рас- [c.35]


Смотреть страницы где упоминается термин Анодная пассивация окислов: [c.200]    [c.209]    [c.178]    [c.20]    [c.627]    [c.810]   
Ингибиторы коррозии (1977) -- [ c.20 , c.21 ]




ПОИСК





Смотрите так же термины и статьи:

Пассивация

Ток анодный



© 2025 chem21.info Реклама на сайте