Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каучук атмосферостойкость

    Весьма интересно сопоставить свойства простых сополимеров бутадиена и акрилонитрила (бутадиен- нитрильные каучуки СКН) и привитого сополимера, полученного на основе тех же компонентов и при одинаковом соотношении их в макромолекулах обоих сополимеров. Привитые сополимеры полибутадиена и акрилонитрила после вулканизации, как и вулканизаты каучука СКН, превосходят вулканизаты натурального каучука или полибутадиена по теплостойкости и атмосферостойкости. Привитой сополимер отличается большей прочностью и эластичностью по сравнению с простым сополимером бутадиена и акрилонитрила. Без введения усиливающего наполнителя предел прочности при растяжении вулканизатов привитого сополимера может достигать 174 кг см , относительное удлинение—765%, предел прочности при растяжении вулканизатов простого сополимера [c.540]


    Изопреновый каучук (СКИ) является по строению и свойствам синтетическим аналогом натурального каучука. Для изготовления резиновых смесей из СКИ используют те же ингредиенты, что и для НК. Для резин на основе изопренового каучука характерна низкая газопроницаемость, высокие упруго-прочностные показатели, достаточно высокая стойкость к действию воды, ацетона, этилового спирта. К недостаткам СКИ относят низкую стойкость к действию бензина, минеральных, растительных и животных масел, ароматических и хлорсодержащих углеводородов. Низка прочность при повышенных температурах, озоно- и атмосферостойкость плохая. [c.23]

    Пневматическим распылением Каучуки КЧ Высыхают при 150-180 °С за 1 ч обладают твердостью, эластичностью, атмосферостойкостью, бензо- и маслостойкостью. Применяют для окраски оптико-механических приборов. [c.377]

    Атмосферостойкость П. у. повышают, заменяя бутадиеновый каучук на акрилатный или этилен-пропиленовый. Используя в качестве матрицы тройные сополимеры стирола с акрилатами и уменьшая размер частиц каучуковой фазы, получают оптически прозрачные П. у. [c.25]

    Бутилкаучук хорошо совмещается с полиэтиленом, полиизобутиленом и этиленпропиленовым каучуками. Вулканизаты таких каучуков отличаются очень хорошими диэлектрическими свойствами. Резины на основе бутилкаучука в сочетании с СКЭПТ характеризуются повышенной эластичностью и отличной озоно- и атмосферостойкостью. Введение хлоропренового каучука обеспечивает смесям высокую теплостойкость. [c.204]

    Основной особенностью указанных материалов. является их способность переходить при комнатной или повышенной температурах из вязко-текучего в эластическое состояние. Образовавшаяся структурированная система должна обладать высокой адгезией к подложке, быть газонепроницаемой, водо- и атмосферостойкой, морозостойкой и иметь другие. специфические свойства. Каучук сообщает герметикам эластичность. Около 80% герметиков составляют материалы на основе тиоколов. [c.209]

    Полиакрилаты давно признаны материалами, имеющими наибольшую оптическую прозрачность и хорошую атмосферостойкость. Полиметилметакрилат более устойчив к ударным нагрузкам, чем стекло, однако его ударная вязкость мала по сравнению с ударной вязкостью таких материалов, как ударопрочный полистирол, сополимер АБС и другие модифицированные смеси полимеров на основе каучуков. Однако большинство этих ударопрочных полимерных систем лишь ограниченно атмосферостойки и в большинстве случаев мутны или полупрозрачны. [c.175]


    Свойства. Полиуретановые волокна — важнейший эластичный материал, по растяжимости оии равноценны резиновым нитям. Размягчаются при 175°С. По сравнению с природным и синтетическим каучуком более твердые, стойкие к истиранию, легкие, тепло- и атмосферостойкие. Устойчивы к химическим реактивам (важное свойство при химической чистке изделий) и водостойки, хорошо окрашиваются обладают более высоким модулем упругости. Существенный недостаток их —темнеют на солнечном свету, поэтому почти сразу после получения они имеют коричневую окраску. [c.590]

    В 70-х гг. в ряде стран начато промышленное производство атмосферостойких и прозрачных модификаций ударопрочного П. При этом ненасыщенный бутадиеновый каучук заменяют на насыщенные эластомеры (акрилатные, этилен-пропиленовые, хлорированный полиэтилен и др.). Прививка С. на эти эластомеры протекает значительно труднее. Применяют специальные методы — химич. модификацию эластомера, добавляют сшивающие агенты. Все же эти продукты обладают сравнительно более низкой ударной прочностью, чем сополимеры на основе каучука. Прозрачный гетерогенный материал можно получить, уменьшая размер ча- [c.272]

    С начала 60-х годов в производстве авто деталей используют акрилатные каучуки, обладающие высокой атмосферостойкостью, стойкостью к действию горючих масел и сохраняющие эксплуатационные свойства в интервале температур от —40 до + 200 °С. По сравнению с фторэластомерами акрилатные каучуки намного дешевле, из них изготовляют уплотнительные кольца вала, рукава. [c.97]

    В странах Западной Европы и США все шире применяют пластмассовые рамы, которые по сравнению с традиционными деревянными и алюминиевыми имеют большие преимущества в отношении тепло- и звукоизоляции, простоты монтажа и ухода. Основной полимер для их производства — поливинилхлорид специальных сортов с повышенными ударопрочностью и атмосферостойкостью, получаемый модификацией поливинилхлорида хлорированным полиэтиленом, полиакрилатами, сополимером этилена и винилацетата, этиленпропиленовым каучуком. Поливинилхлоридные композиции содержат обычно до 15% диоксида титана для защиты полимера от действия УФ-излучения, стабилизаторы, наполнители, главным образом аппретированный карбонат кальция. Иногда для обеспечения лучшей атмосферостойкости рамы изготовляют соэкструзией поливинилхлорида с полиметилметакрилатом, образующим наружный защитный слой. Применяют и облицовку деревянных рам поливинилхлоридной пленкой, предохраняющей дерево от действия влаги. Распространены также комбинированные рамы, включающие профили из различных материалов алюминия, поливинилхлорида, пенополиуретана, полипропилена. [c.230]

    Резиновые смеси. Полярность Б.-н. к. ограничивает возможность их совмещения с неполярными полимерами, напр, с натуральным каучуком. При замене в смесях 20 мае. ч. бутадиен-нитрильного каучука на натуральный каучук улучшаются технологич. свойства (пластичность, клейкость) смесей, но снижаются тепло- и маслостойкость вулканизатов. С увеличением содержания связанного акрилонитрила совместимость Б.-н. к. с натуральным каучуком ухудшается. С не-наполненными бутадиен-стирольными каучуками Б.-п.к. совмещаются лучше, чем с натуральным. Количество бутадиен-стирольных каучуков в композиции с Б.-н. к. может достигать 40%. При этом уменьшается склонность смесей к подвулканизации, улучшается их шприцуемость, повышаются твердость и эластичность и ухудшается маслостойкость вулканизатов. Б.-н. к. хорошо совмещаются с полихлоропреном резины на основе этих композиций превосходят резины из Б.-н. к. по атмосферостойкости, но уступают им по стойкости к набуханию, особенно в ароматич. растворителях. Введение полихлоропрена способствует также повышению эластичности по отскоку и сопротивления раздиру вулканизатов. При совмещении Б.-н. к. с феноло-формальдегидными смолами улучшаются технологич. свойства смесей, повышаются прочность при растяжении, сопротивление раздиру, твердость, масло- и износостойкость и уменьшается остаточное сжатие вулканизатов. В смеси на основе Б.-н. к. можно ввести до 75 мае. ч. феноло-формальдегидных смол (здесь и далее количество ингредиентов указано в расчете на 100 мае. ч. каучука), эффект их действия повышается с увеличением содержания связанного акрилонитрила в сополимере. [c.154]

    Вулканизаты насыщенных каучуков, полученные с применением перекисей, характеризуются комплексом ценных технич. свойств широким температурным интервалом эксплуатации, высокой химической, радиационной и атмосферостойкостью. Применение перекисей позволяет получать физиологически инертные резины. [c.270]

    Из полиуретанов получают также эл-астичные, устойчивые к старению волокна и пленки. Полиуретановые клеи и лаки, обладающие высокой адгезией к различным материалам, хорошей теплостойкостью, водо- и атмосферостойкостью, применяются для получения защитных покрытий и эмалировки проводов. Каучуки, имеющие высокую прочность, применяются для изготовления шин, конвейерных лент, подошв обуви и т. д. [c.85]

    На основе продуктов совмещения ЭНБС с растворимыми фторопластами типа Ф-42,32 л. получены лаки ФЭН. Они могут быть использованы для получения термо-, вибро- и химически стойких покрытий. На основе продуктов совмещения ЭНБС с бутадиен-акрилонитрильными каучуками СКН-26-1А, СКН-18-1А получены лаки КЭН. Покрытия на их основе сочетают эластичность, термостабильность и адгезионную прочность. Совмещением ЭНБС с полиамидом П-548 получены лаки ПАЭН, на основе которых получают термостойкие и атмосферостойкие покрытия повыщенной прочности. [c.77]


    Покрытие — жидкий силиконовый каучук Каучук СКТН-1 Атмосферостойкие гидрофобные покрытия [c.58]

    АБС-пластик-непрозрачный, обычно темноокрашенный материал, обладающий высокими влаго-, масло-, кислото-и щелочестойкостью, устойчивостью к действию орг. р-ри-телей. По мех, прочности, ударной вязкости, теплостойкости и жесткости превосходит ударопрочный полистирол, Атмосферостойкость пластика относительно невысока, что обусловлено присутствием в макромолекуле каучука не-насыщ, связей. Повышение атмосферостойкости достигается заменой полибутадиена на насыщ, эластомер, напр, бу-тилакрилатный (ААС-пластик), бутилкаучук, двойной эти-лен-пропиленовый, хлориров. полиэтилен. Прозрачную модификацию пластика получают, используя 4-й мономер-метилметакрилат (при этом повышается и атмосферостойкость сополимера). [c.19]

    К атмосферостойким материалам относятся резины на основе кремнийорг. и этилен-пропиленовых каучуков, бути лкаучу ка полиметакрилаты жесткий ПВХ и полиэтилен низкого давления, наполненные сажей ацетаты целлюлозы нек-рые отвержденные реактопласты, напр, феноло-формальд, и эпоксидные смолы, и др. Эффективный способ повышения А. полимеров-введение стабилизаторов, напр, антиоксидантов, антиозонантов, светостабилизаторов. [c.213]

    Хлор- и бромбутилкаучук содержат соотв. 1,1-1,3% С1 или 2-3% Вг, присоединенных гл. обр. в а-положение к двойным связям изопреновых звеньев макромолекулы Подвижные в аллильном положении атомы галогена способны участвовать в вулканизации (в т. ч. с использованием в кач-вс вулканизующего агента 2пО). Это обусловливает повыш. скорость вулканизации таких каучуков (особенно бромбутилкаучукаХ благодаря чему возможна их совулка-низация с НК и высоконеиасыщенными СК. Вулканизаты галогениров. Б имеют повыш. теплостойкость Хлор-и бромбутилкаучуки применяют для изготовления внутр слоя бескамерных автошин, атмосферостойких боковин радиальных шин, теплостойких автомобильных камер, конвейерных лент, рукавов, изделий мед. назначения, клеев, промежут. прослоек для крепления резины к металлу и резин из Б к резинам на основе др каучуков. Мировое произ-во этих каучуков ок 100 тыс т/год (1981), [c.335]

    Пероксидные вулкаинзаты насыщенных, напрнмер кремний-оргакических каучуков,. можно эксплуатировать при очень низких и высоких температурах они характеризуются высокой химической, радиационной и атмосферостойкостью. [c.177]

    Для придания ПВХ материалам эластичности без применения низкомолекулярных пластификаторов используют способы смешения с различными смолами, сополимеризации и прививки [194]. В качестве примера первого способа можно привести смешение ПВХ с термопластичным полиуретаном. Сополимеры этилена с винилацетатом (ЭВА) применяют в качестве внутренних нелетучих и неэкстрагируемых пластификаторов или атмосферостойких модификаторов ударопрочности ПВХ. Для полной совместимости с ПВХ содержание винилацетата должно составлять >60%. Эти сополимеры очень мягкие и липкие и поэтому трудно поддаются переработке на обычном для ПВХ оборудовании. Для этих же целей используют и хлорированный полиэтилен (ХПЭ). Нитрилбутадиеновый каучук (частично сшитый), является распространенным модификатором пластифицированного ПВХ для улучшения его маслостойкости. [c.270]

    Высокой атмосферостойкостью, не уступающей атмосферостойкости склеиваемых материалов, отличаются соединения стеклопластиков на полиэфирных клеях (ПН-1 и т. п.).Хорошей атмосферостойкостью характеризуются клеевые соединения на основе фенольных смол, особенно соединения древесины и некоторых стеклопластиков на немодифицированных фенольных и резорциновых клеях, а также соединения металлов и других конструкционных материалов на модифицированных фенольных клеях — фенолоацетальных, фенолокаучуковых и др. [2, 9, 25]. В этих клеях второй компонент — каучук или термопласт — существенно повышает релаксационную способность системы. Это же относится и к соединениям асбестоцемента на резорцинотиокольных клеях ДТ-1 и ДТ-3, представляющих со- [c.46]

    Как уже упоминалось выше, для изготовления невысыхающих герметиков используются или полностью насыщенные или с низкой непредельностью полимеры типа бутилкаучука, полнизо-бутилена, этилен-пропиленового каучука, хлорированного, бутилкаучука различной молекулярной массы — от 10 10 до 200-10 в сочетании с полистиролом, полипропиленом и полиэтиленом высокого и низкого давления и такими же полимерами более низкой молекулярной массы (по 300) [1, 7, 16—21]. Эти полимеры хорошо перерабатываются на вальцах и другом оборудовании резиновой промышленности, а отсутствие двойных связей или их малое содержание предопределяет высокую химическую стойкость герметиков, атмосферостойкость и стойкость к старению. [c.141]

    В качестве способа получения ударопрочных пластиков изучены дисперсионные процессы в неводных средах, использующие прививку на каучукоподобные полимеры. В наиболее распространенных процессах производства таких пластиков используют полибутадиен в качестве модифицирующего каучука, однако, получаемые продукты обладают низкой атмосферостойкостью [63]. Известно, что в этом отношении превосходно ведут себя тройные сополимеры этилена, пропилена и полиенов (каучуки СКЭП), но они недостаточно реакционноспособны, чтобы обеспечить требуемый уровень прививки в обычных процессах получения АБС-пластиков. Хорошие результаты получены, однако, при сополимеризации стирола и акрилонитрила в растворе каучукоподобного сополимера этилена, пропилена и 2-этилиден-2-норбор-нена в смеси бензола и гексана. Существенным для прививки является инициатор, такой, как перекись бензоила [64]. Через 15—20 мин после начала реакции происходит осаждение и конечный продукт представляет собой устойчивую низковязкую дисперсию. В усовершенствованном варианте этого процесса сначала проводят стадию затравки, после чего вносят основное количество реагентов и ведут полимеризацию до завершения [65]. [c.99]

    Натуральный каучук и другие полимеры, содержащие реакционноспособные атомы водорода, могут быть модифицированы алифатическими диазосоединениями, например эфирами бис-азодикарбоновых кислот. Обработанную поверхность затем прессуют с металлической пластиной, покрытой диизоцианатом. Сила связи значительно больше, чем при использовании только диизоцианата[166]. Смесь, состоящая из диизоцианата и бензоилнроизводного, при реакции на поверхности, например поли-винилфторида, образует пленку, поглощающую ультрафиолетовые лучи и обладающую более высокой атмосферостойкостью [167]. Гидролизом 2%-ным едким натром и восстановлением алюмогидридом. лития можно ввести активный водород на поверхность полиэтилентерефталата (реакцию проводят до потери веса на 0,5—2%). При обработке волокон различными продуктами взаимодействия диизоцианата и полигликоля исчезает нежелательный статический заряд [168]. [c.445]

    Циклокаучуки почти всех видов благодаря их высокой ХИМ-, водо- и атмосферостойкости применяют в качестве иленкообразующих веществ для лакокрасочных материалов (см. Циклокаучуковые лаки и эмали). Большинство циклокаучуков используют также при получении клеов, предназначенных гл. обр. для крепления резины к металлу, и в качестве электроизоляционных материалов. Из бутадиен-стирольного каучука, циклизованного при 160—180°С в феноле или крезоле под действием Sn l4 или BF3, получают материалы, к-рые наносят на бумагу для повышения ее водостойкости. [c.440]

    Насыщенность (или малая ненасыщенность) Э.-п. к. обусловливает их очень высокую стойкость к окислению и атмосферостойкость, хорошую теплостойкость, а также устойчивость к действию многих агрессивных срод — спиртов, кетонов, эфиров, гидравлич. жидкостей, щелочей, кислот. Э.-п. к. стабильны при хранении даже в отсутствие противостарителей. В товарные Э.-п. к. вводят обычно при их иолучении 0,2 —0,5% (в расчете на массу каучука) неокрашивающих антиоксидантов фенольного тииа, напр. 2,6-ди-трет-бутил-4-метилфенол (ионол) в некоторых случаях применяют окрашивающие антиоксиданты, например феиил-р-пафтиламин (неозон Д). [c.511]

    Старение стимулируется механическими нагрузками, а также под действием различных сред. По мере убывания атмосферостойкости резины можно расположить в сле-дунЬщий ряд силиконовые акриловые на основе СКЭПТ каучуки на основе хлоропрена, бутилкаучуки, полисуль-фидные каучуки полиуретаны. [c.361]

    Однако потребление этих каучуков в производстве автодеталей снижается, а полихлоропренового, нитрильного, этилен-лропиленового постоянно возрастает, что обусловлено возможностью улучшения тепло-, бензо- и атмосферостойкости резин при незначительном увеличении их стоимости. Так, потребление этиленпропиленового каучука в среднем на легковой автомобиль возрос с 1,3 кг в 1965 г. до 7 кг в 1980 г., а в автомобиле марки Рено , например, потребляют около 11 кг этого каучука. В США в 1983 г. в целом в производстве автодеталей расходовали 35,3 тыс. т этилен-пропиленового тройного сополимера (25% общего потребления каучука этого типа) в основном для изготовления бамперов, радиаторных рукавов, различных уплотнений. Увеличивается использование высоконаполненных смесей на основе этилен-пропиленового каучука для изготовления звукоизоляционных элементов, а в комбинации с другими лолиолефинами — деталей внутреннего и наружного оснащения автомобилей. [c.94]


Смотреть страницы где упоминается термин Каучук атмосферостойкость: [c.454]    [c.407]    [c.226]    [c.371]    [c.167]    [c.54]    [c.165]    [c.47]    [c.58]    [c.454]    [c.469]    [c.52]    [c.151]    [c.493]    [c.111]    [c.157]    [c.347]    [c.577]    [c.92]    [c.126]   
Энциклопедия полимеров том 1 (1972) -- [ c.224 ]

Энциклопедия полимеров Том 1 (1974) -- [ c.224 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосферостойкость



© 2025 chem21.info Реклама на сайте