Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Детектирование жидкостной хроматографии

    Поскольку растворители, составляющие подвижную фазу, летучи и в системе детектирования жидкостного хроматографа с датчиком по теплопроводности не могут дать пиков, необходимых для расчета, перед подачей подвижной фазы в колонку вводится раствор какого-либо высококипящего нефтепродукта в подвижной фазе. Благодаря этому на хроматограмме фиксируются высококипящие компоненты нефтепродукта, время проявления которых равно времени удерживания используемых растворителей (рис. 2). [c.7]


    Детектирование в жидкостной хроматографии затруднено тем, что по физическим свойствам подвижная фаза мало отличается от исследуемых растворов веществ. Принцип действия детекторов дол- [c.88]

    На рис. 109 приведена схема газо-жидкостного хроматографа. В современных хроматографах можно выделить три основные части. Это системы ввода образцов и подготовки измерения и регулировки газов-носителей. Температурные режимы колонки, детектора и дозирующих устройств обеспечивает система термостатирования и измерения температуры. Получение хроматограмм осуществляется с помощью системы детектирования, в которую кроме детектора входят блок его питания, усилители сигнала, автоматические потенциометры и на современных хроматографах интеграторы и небольшие ЭВМ, управляющие работой прибора и производящие обработку хроматограмм. На рис. ПО приведена типичная хроматограмма смеси углеводородов, полученная с программированным изменением температуры. [c.296]

    Детекторы. В качестве детекторов в жидкостной хроматографии обычно используют высокочувствительные спектрофотометры, которые позволяют детектировать до 10 М соединений, поглощающих свет в УФ или видимой части спектра (190—800 нм). В последнее время начали применять высокоскоростные спектрофотометры, регистрирующие спектр в течение 0,01—0,05 с, что весьма ценно при качественной идентификации соединений. Для детектирования неокрашенных веществ можно использовать дифференциальный рефрактометр. При анализе соединений, способных к окислению или восстановлению, применяют электрохимический детектор, по сути представляющий собой миниатюрный полярограф. Используют также флуоресцентные детекторы и детекторы по электропроводности. Последние используют главным образом в ионообменной хроматографии. Для уменьшения размывания хроматографической зоны объемы измерительных ячеек в детекторах сведены к минимуму (I—10 мкл). [c.596]

    Чистота растворителя в жидкостной хроматографии имеет очень большое значение, так как различные примеси в подвижной фазе влияют на все основные стадии процесса подачу растворителя, разделение в колонке, детектирование и воспроизводимость результатов. Требуемая степень чистоты растворителя определяется выбранным вариантом разделения и используемой аппаратурой. [c.127]

    Детектирование в И. х. осуществляют с помощью любого детектора, применяемого в жидкостной хроматографии (см. Детекторы хроматографические). Наиб, универсален для ионных соединений кондуктометр, на применении к-рого основан вариант И. х. - ионная хроматография. [c.264]


    Все варианты жидкостной хроматографии основаны на разделении во времени компонентов смеси в соответствии с различием их физико-химических свойств. В современных приборах используются колонки с внутренним диаметром в несколько миллиметров и объемы пробы порядка десятков микролитров, поэтому для детектирования компонентов смеси применяют электрохимические ячейки с малым внутренним объемом. Это требование еще более ужесточается при работе с колонками, имеющими внутренний диаметр от 50 до 200 мкм. [c.566]

    Самой первой моделью миниатюрной аналитической системы, очевидно, следует считать полностью интегрированную газохроматографическую систему, включающую системы подачи и детектирования, изготовленную на кремниевом чипе Терри и сотрудниками в 1979 году. В области жидкостной хроматографии подобные разработки появились только в последние годы. Схема жидкостного хроматографа с открытой колонкой представлена на рис. 15.3-2. Типичные размеры колонки ширина 5-50 мкм, глубина 1-10 мкм, длина 5-15 см. При этом общий объем колонки находится в диапазоне между [c.643]

    Определение углеводородного состава нефти и отдельных ее температурных фракций проводили методом жидкостной хроматографии на силикагеле в условиях градиентного элюирования с рефрактометрическим детектированием. Исследовали нефти из 1-го (скв. № 54 и 73), Мергельного (скв. № 20 и 51) и 2-го песчаного (скв. № 33 и 92) горизонтов. Физико-химическая характеристика образцов [c.71]

    Хотя жидкостная хроматография - это метод разделения пробы на компоненты, современный жидкостный хроматограф включает в себя пе только систему разделения, но и систему количественного измерения содержания каждого комиоиеита, т.е. систему детектирования (вместе с системой обработки хроматографического сигнала). [c.11]

    Чувствительность детектора может быть примерно одинаковой ДЛЯ веществ различной химической природы, но может и сильно различаться, иногда даже для близких соединений. В первом случае говорят о неселективном детектировании, во втором — о селективном. Часто селективность детектора имеет не меньшее значение, чем чувствительность, причем в зависимости от характера конкретной аналитической проблемы селективность может оказаться как достоинством, так и недостатком. Так, если разделение преследует цель дать общий обзор состава исследуемого объекта, предпочтение должно быть отдано неселективному детектору. В другой ситуации, когда требуется определить лишь одно соединение на фоне сложной смеси, удобно воспользоваться селективным детектором. Он поможет решить проблему, даже если изучаемая смесь столь сложна, что полное ее разделение невозможно. Такого рода задачи довольно типичны для биомедицинского применения жидкостной хроматографии. Основные характеристики наиболее распространенных типов детекторов даны в табл. 5.3. [c.202]

    Новые возможности открывает жидкостная хроматография с электрохимическим детектированием компонентов [7]. Предложены детекторы с несколькими рабочими (микро)электродами, детекторы с переносом ионов через поверхность границы раздела вода / отвержденный нитробензол, химическй модифицированные электроды, катализирующие химические реакции. [c.87]

    Успешное развитие аналитической экспрессной системы контроля качества нефтяных и водных продуктов основано на методах авто-детекторной хемосорбционной индикаторно-жидкостной хроматографии. Сущность этих методов заключается в применении индикаторных сорбентов, обеспечивающих хроматографическое разделение анализируемых продуктов и детектирование образующихся зон адсорбции определяемых компонентов и примесей в индикаторных трубках. Производство индикаторных сорбентов было налажено на Щелковском химкомбинате, заводе Диатомит и Сорбполимере . Индикаторные сорбенты получают на основе ионного обмена и хемо-сорбционного комплексообразования в водных растворах индикаторов с последующей дегидратацией конечной продукции. В процессе ионного обмена в качестве модификаторов используются соли различных металлов, среди которых получили применение кобальт и серебро, обеспечивающие голубую, фиолетовую и розовую окраску индикаторных сорбентов. Для получения индикаторных сорбентов берут фракцию с крупностью 0,05-0,15 мм при соотношении сорбент модификатор — I 30, температуре 50-70°С, продолжительности модификации 30-50 мин. Дегидратацию проводят при 110 5 С в течение [c.121]

    В то же время капиллярная хроматография обладает рядом недостатков. К наиболее значительным относятся следующие малые значения коэффициента селективности для слабо сорбирующихся веществ могут свести на нет преимущества высокой эффективности малые значения коэффициентов Генри ограничивают возможности обогащения капиллярная хроматография требует решения более трудных технических задач, чем газо-жидкостная хроматография с насадочными колонками, особенно возникающих при дозировке и детектировании. [c.203]

    Флюидиая К. X. основана на использовании в качестве подвижной фазы СО2, N30 и др. газов, сжатых до сверхкритич. состояния (флюиды), и полых капиллярных колонок с внутр. диаметром 25-100 мкм. Растворяющая способность флюида сопоставима с растворяющей способностью подвижной фазы в жидкостной хроматографии, а значение коэф. диффузии растворенных во флюиде в-в на 2-3 порядка выше, чем в жидкостной хроматографии. Это св-во флюида в сочетании с относительно низкой его вязкостью позволяет увеличить эффективность разделения. При разделении многокомпонентных смесей в-в коэф. распределения и время элюирования регулируют программированием плотности флюида. Для детектирования применяют универсальный к орг. в-вам пламенно-ионизац. детектор, оптич. спектральный детектор или масс-спектрометр. [c.309]


    Термин Р.х. применяют в осн. в газовой хроматографии. Аналогичные разновидности жидкостной хроматографии обычно называют спец. терминами, напр, реакционное детектирование -совокупность методов превращения анализируемых соед. после их выхода из колонки с целью улучшения характеристик последующего детектирования, химическая дериватизация -методы получения производных анализируемых соед. с целью улучшения характеристик разделения и детектирования. Иногда ионообменную и лигандообменную (с использованием хелатообразующих сорбентов) хроматографию рассматривают как частный случай реакц. жидкостной хроматографии. [c.216]

    Следует заметить, что динамическое поведение детектора, отражающее скорость изменения его отклика, является сложным свойством всей системы детектирования. Поскольку в жидкостной хроматографии определяемые вещества распределены по зонам, перемещающимся с потоком жидкости, то выходные сигналы детектора регистрируются в виде пиков. Ширина пиков определяется главным образом дисперсией зон в подводящих коммуникациях и внутри детектора. Поэтому коммуникации должны иметь малый внутренний диаметр (0,5 или даже 0,25 мм) и минимальную длину. Расширение зоны внутри детектора зависит не только от его внутреннего объема, но и от профиля скорости потока жидкости, формы ячейки, типа электродов и т.д. Большинство современных электрохимических детекторов имеют внутренний объем, близкий к 1мкл и даже меньше. Особый интерес вызывают миниатюрные вольтамперометрические детекторы, пригодные для использования с капиллярными колонками. В общем случае предпочтительнее работать с ячейками малого объема и при достаточно высоких скоростях потока. [c.566]

    В литературе отсутствует общепринятое сокращение электрохимического детектора для проточного анализа. Чаще всего используют начальные буквы названий методов разделения и детектирования, например, высокоэффективная жидкостная хроматография с электрохимическим детектированием ВЭЖХ-ЭХД. [c.566]

    Сочетание мягкой ионизации и МС-МС, обычно как детектирование on-line в варианте жидкостной хроматографии, также часто используют для детектирования метаболитов лекарственных веществ. Это одна из важнейших областей применения масс-спектрометрии, так как на ранних стадиях разработки лекарственных препаратов исследователям доступны только очень малые количества метаболитов, и их идентификация имеет первостепенную важность в фармацевтических исследованиях потенциальных лекарств. Ранее для этой цели использовали сочетание масс-спектрометрии с газовой хроматографией, включающее достаточно сложные методики дериватизации. За несколько по- [c.305]

    В то время как газовая хроматография является ключевым методом разделения для летучих соединений, жидкостная хроматография (ЖХ) - ее эквивалент для полярных и высокомолекулярных соединений. Однако в отличие от ГХ, ЖХ испытьшает недостаток детекторов, которые одновременно чувствительны и специфичны или хотя бы селективны (см. разд.5.2). Большинство обычно используемых детекторов либо чувствительны, но не специфичны (например, рефрактометрический или флуоресцентный детекторы) или в некоторой степени специфичны в ущерб чувствительности (например, детектирование с диодной матрицей). Это вызвало развитие гибридных ЖХ-методов, гарантирующих оба этих свойства. [c.620]

    Долгое время считалось, что невозможно сочетать жидкостную хроматографию с масс-спектрометрическим детектированием. Несоответствие между скоростями потока в обычных ВЭЖХ-системах (0,5-2 мл/мин нормально-или обращенно-фазового растворителя) и требования к вакууму в масс-спектрометре казались слишком большими. Тем не менее отсутствие чувствительного, селективного и универсального детектора для ВЭЖХ служил движущей силой исследований, направленных на сочетание ВЭЖХ и МС. Для преодоления проблемы явной несовместимости за последние 20 лет было разработано несколько различных интерфейсов. [c.621]

    Жидкостная хроматография — инфракрасное детектирование с фурье-преобразованием (ЖХ-ФПИК) [c.630]

    СФХ также успешно сочетается с масс-спектрометрическим, ФПИК и атомно-эмиссионным детектированием. Благодаря природе подвижной фазы, используемой в СФХ (обычно это сверхкритический диоксид углерода, часто с добавками небольших количеств модификатора, например, метанола), требования к интерфейсу являются промежуточными между требованиями в случае газовой и жидкостной хроматографии. Поэтому существующие ГХ- и ЖХ-интерфейсы могут быть приспособлены с небольшими изменениями для успешной работы с различными типами спектроскопических детекторов. [c.635]

    Миниатюризация таких методов, как жидкостная хроматография, проточно-инжекционный анализ, газовая хроматография и масс-спектрометрия, обеспечит уменьшение расхода реагентов, технологических издержек и стоимости анализатора. Будущие промышленные анализаторы будут также обладать функцией самоконтроля. По-видимому, будут наблюдаться тенденция широкого использования т-Ипе-сенсоров, развитие оптоволоконной технологии для сочетания методов оптической спектроскопиии с сенсорами зондового типа и развитие неразрушающих методов для устранения проблем пробоотбора. Современные тенденции — развитие аппаратуры удаленного детектирования и микроанализаторной/сенсорной технологии. [c.670]

    Автомобили с дизельными двигателями становятся все более популярными, что повышает вероятность появления еще одного источника загрязнения. Конгресс США поручил Управлению по охране окружающей среды изучить особенности выхлопных газов дизелей и их воздействие на здоровье человека ( Закон о чистоте воздуха , август 1977 г.). Результаты этого исследования легли в основу требований к выхлопным газам дизелей, обязательных для всех моделей автомобилей, выпускаемых с 1982 г. Соответственно исследователи интенсифицировали усилия, направленные на разработку методов, позволяющих охарактеризовать выхлопные газы дизелей [10—14]. Многокомпо-нентность образцов и необходимость их возможно более полной характеристики явились причиной использования таких чрезвычайно сложных аналитических систем, как газо-жидкостная хроматография — масс-спектрометрия (ГЖХ—-МС), газо-жидкостная хроматография с пламенно-ионизационным детектированием (ГЖХ — ПИД), высокоэффективная жидкостная хроматография (ВЭЖХ), газо-жидкостная хроматография — фурье-спектроскопия в инфракрасной области (ГЖХ — ИК—ФС). Для фракций, обладавших мутагенными свойствами, применялись также биологические методы анализа. Ряд компонентов удалось идентифицировать только благодаря применению взаимно дополняющих методов анализа, например ГЖХ —МС, ГЖХ —ПИД и ГЖХ —ИК —ФС. Методом ГЖХ —МС можно легко определить молекулярную массу компонента и получить данные о его структуре, но этот метод менее информативен при идентификации функциональных групп напротив, такая информация легко может быть получена методом ГЖХ — ИК — ФС. В то же время последний метод не позволяет различать гомологичные соединения [15]. Этот пример наглядно демонстрирует необходимость применения в ряде случаев наиболее совершенных и информативных инструментальных методов анализа, как бы дороги они ни были. Стоимость работ должна соответствовать важности объекта изучения. В частности, если объект связан с контролем загрязнения окружающей среды, которое может иметь очень серьезные экологические последствия, то при- [c.23]

    С широким хвостом (непоказанного на рис. 1.20) Весь элюент из колонки был собран в фракции по 10 мл. Аликвоты из каждой фракции были проанализированы на содержание парабенов с использованием обращенно-фазной аналитической жидкостной хроматографии с УФ-детектированием. На рис. 1.20 построен график УФ-поглощения отдельных компонентов каждой фракции, показывающий индивидуальные, перекрывающиеся концентрационные профили в зависимости от объема элюирования. Штриховые кривые отражают общий процент каждого компонента, элюированного из колонки. [c.51]


Смотреть страницы где упоминается термин Детектирование жидкостной хроматографии : [c.83]    [c.58]    [c.142]    [c.11]    [c.282]    [c.403]    [c.747]    [c.28]    [c.187]    [c.203]    [c.446]    [c.243]    [c.411]    [c.597]    [c.648]    [c.90]    [c.6]    [c.271]    [c.131]    [c.119]   
Хроматографические материалы (1978) -- [ c.161 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкостная хроматография хроматографы

Хроматография жидкостная

Хроматография жидкостно-жидкостная

Хроматографы жидкостные



© 2025 chem21.info Реклама на сайте