Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выпрямители электролитические

Рис. 88. Схема электролитического выпрямителя Рис. 88. <a href="/info/359832">Схема электролитического</a> выпрямителя

    Ниобий используется в виде порошка, жести, проволоки и т. д. Металлический ниобий применяется в радиотехнике при изготовлении электронных ламп — из него готовят нити накала, электроды в электролитических выпрямителях и т. д. Большое значение он имеет в сплавах. Карбиды ниобия совместно с карбидами Та, Ш или Мо используются для изготовления твердых режущих сплавов. Ниобий оказывает на вязкость стали большее влияние, чем V, Ш, Сг и Мо полагают, что в быстрорежущих сталях 6—12% ЫЬ могут заменить 12—20% . По данным Беккета и Френкса, ниобий в хромистой самозакаливающейся стали переводит углерод в твердый раствор и тем самым способствует получению стали в виде тонких, мягких и легко поддающихся горячей обработке листов. Ниобий в стали с большим содержанием хрома уменьшает время отжига, необходимое для улучшения пластических свойств стали. Добавка ниобия к хромистым сталям с содержанием хрома меньше 12% увеличивает их коррозионную устойчивость даже при высоких температурах, так как углерод лучше соединяется с ниобием и тем самым способствует образованию пассивированного хрома. Ниобий вводится в стали в виде феррониобия после раскисления перед отливкой детали. До использования ниобия в кораблестроении цельносварные корпуса морских судов не могли считаться прочными, так как сварные швы подвергались сильной коррозии в морской воде. Присадка к сварочному железу небольших количеств ниобия защитила сварные швы от коррозии и способствовала созданию цельносварных морских судов. [c.307]

Рис. 8. Схема прибора для измерения электропроводности раствора /—трансформатор 2—измерительная проволока (реохорд) 5—магазин сопротивлений 4—катушка возбуждения механического выпрямителя 5—механический выпрямитель —электролитическая ячейка Рис. 8. <a href="/info/855414">Схема прибора</a> для <a href="/info/1727068">измерения электропроводности раствора</a> /—трансформатор 2—измерительная проволока (реохорд) 5—<a href="/info/374643">магазин сопротивлений</a> 4—<a href="/info/13590">катушка возбуждения</a> <a href="/info/799862">механического выпрямителя</a> 5—<a href="/info/799862">механический выпрямитель</a> —электролитическая ячейка
    Селеновый выпрямитель типа ВСА-6М предназначен для преобразования переменного тока в постоянный, подаваемый на питание электролитической ванны. Селеновый выпрямитель устанавливают на специальной подставке вблизи вытяжного шкафа. [c.112]

    Источниками постоянного тока при электрохимической обработке металлов служат электродвигатели — генераторы низкого напряжения, рассчитанные на большую силу тока, или полупроводниковые многоамперные выпрямители, состоящие из трансформатора и вентиля, пропускающего электрический ток только в одном направлении электронные, селеновые, германиевые, кремниевые и др. В практике электролитических цехов покрытий применяют индивидуальное питание отдельных ванн и питание одновременно нескольких ванн, включенных параллельно. Регулировать [c.452]


    Алюминий — хороший проводник электричества гидрат окиси алюминия тока не проводит. На этом различии основано устройство электролитического выпрямителя с алюминиевым анодом. Катодом может быть железо, свинец, уголь. Электролитом служит насыщенный раствор углекислого аммония. Такой выпрямитель могут собрать сами учащиеся. В качестве сосуда можно взять консервную банку, которая будет служить и катодом. Анод делают из алюминиевой проволоки, причем на верхнюю часть надевают резиновую трубку, оставляющую открытым только нижний конец проволоки. Нужно объяснить учащимся, что с помощью этого выпрямителя можно получить не непрерывный, а пульсирующий ток, протекающий в одном направлении в мо- [c.77]

    Р и с. 110. Алюминиевый электролитический выпрямитель. [c.236]

    Чистая медь применяется для электролитических ванн меднения. Из очень чистой меди делают меднозакисные выпрямители. Для этого из пластин толщиной 1 мм штампуют диски, которые очищают и обезжиривают в 30%-ном растворе NaOH, моют в проточной воде. Затем их подвергают декапированию 15 сек в концентрированной HNOa и опять моют проточной водой. После сушки диски нагревают 5 мин при 1040° С в электрической печи. На их поверхности образуется тонкий слой закиси меди ujO. Затем диски переносят во вторую печь, где их прозе  [c.357]

    Образование плохо проводящей оксидной пленки при анодном действии тока используется для изготовления электролитических конденсаторов (отличающихся большой электроемкостью) и электролитических выпрямителей. Схема такого выпрямителя изображена на рис. 88. В электролитической ванне находится водный раствор NaH Og. Электроды — алюминий и свинец. При включении такого выпрямителя в сеть переменного тока через электролит проходит ток только в направлении, указанном стрелкой, т. е. в те полупериоды, когда на алюминии происходят катодные процессы. Во время анодного действия тока алюминий оксидируется, из-за чего сильно увеличивается сопротивление, а это задерживает прохождение тока через систему. [c.283]

    На рис. 13 показана схема прибора с неуравновешенным мостиком. С помощью такой установки можно осуществлять автоматическую запись кондуктометрических кривых. Цепь состоит из сопротивлений и R2, электролитической ячейки 2, селеновых выпрямителей 3, 4 я регистратора постоянного тока. Установка питается переменным током частотой 50 гц, напряжением 127 в, которое стабилизируется трансформатором-стабилизатором 1 и понижается до 8 в. Сопротивление (делитель напряжения) позволяет отбирать часть этого напряжения. Изменение силы тока при титровании фиксируется регистратором 5. Регистратором может служить милливольтметр постоянного тока марки МСЩ-ПР, в котором следует увеличить скорость передвижения ленты до 2 см/мин путем [c.102]

    Стабилизация. Напряжение (соответственно ток), снимаемое с сетевого выпрямителя, должно быть постоянным и независимым от отбираемой мощности и от колебаний сетевого напряжения. Очень простым методом стабилизации тока при изменяющемся сопротивлении нагрузки при высоком рабочем напряжении (электролитическая ячейка, дуга постоянного тока и др.) является подключение нагрузки через большое сопротивление. Соотношение вспомогательного и рабочего сопротивлений при этом должно составлять около (100—1000) 1. Тогда протекающий ток будет определяться в основном только вспомогательным сопротивлением, а не изменением сопротивления рабочей нагрузки. [c.441]

    Прибор состоит из электролитической ванны, вставленной в электронагревательную печь, селенового выпрямителя тока и электрощита. [c.112]

    Пленка, образуемая на металле в результате анодной поляризации, обладает так называемым вентильным эффектом, т. е. позволяет пропускать ток только в одном направлении, что важно в выпрямителях и электролитических конденсаторах. Не превзойден в этом отношении тантал, однако в некоторых случаях его можно заменить на НЬ, 2г, V. [c.23]

    Режим изготовления одинаков для всех пяти типов][излучате-лей время электролиза 3,5 мин, сила тока 2 ма. Температура электролитической ванны 18—22° С. Толщина активного слоя металлического кобальта не более 50 мкг см . Вследствие различного осаждения тонких слоев кобальта (в зависимости от различной предварительной обработки поверхности данной партии мишеней) и вследствие возможных небольших погрешностей в приготовлении раствора и в процессе работы, активность изготовленного излучателя может несколько отличаться от заданного номинала. В этом случае можно соответственно изменить режим электролиза (силу тока или время электролиза) и активность довести до требуемой величины. Установка для электролиза включает стабилизатор напряжения, выпрямитель, автотрансформатор, миллиамперметр и электролитическую ванну на 250 мл. Анодное и катодное пространство разделено диафрагмой в виде стаканчика с фильтрующим дном из пористого стекла. В качестве анода используется платиновая проволока, Впаянная в стеклянную трубку. [c.295]


    Крупные стальные конструкции в системах водоснабжения обеспечиваются катодной защитой при помощи электролитических анодов. Аноды могут быть изготовлены из самых различных материалов, например из графита, угля, платины, алюминия, железа или стальных сплавов. Они заряжаются путем присоединения к положительной клемме источника постоянного тока, обычно выпрямителя, в то время как защищаемая конструкция соединяется с отрицательной клеммой. Электрический ток переносит электроны к защищаемой стальной конструкции, предотвращая ионизацию и, следовательно, коррозию. На рис. 7.27 показано применение катодной защиты для внутренних поверхностей приподнятого над землей резервуара для хранения воды. В некоторых случаях (в зависимости от состояния резервуара и химических. свойств воды) гальванические аноды используются вместо выпрямителя или в комбинации с ним. Наружные поверхности подземных резервуаров защищают от коррозии, помещая аноды в окружающий резервуар грунт. За исключением особых случаев, системы катодной защиты не применяются для защиты труб водораспределительной сети из-за своей высокой стоимости. [c.215]

    Сила тока в цепи генераторных электродов стабилизируется различными способами в зависимости от ее величины и требующейся стабильности. При силе тока, не превышающей нескольких миллиампер, наиболее простой способ — питание генераторных электродов от источника стабильного и достаточно высокого напряжения через добавочное сопротивление, В качестве источника тока используют сухие батареи и простые стабилизированные выпрямители. Напряжение на электролитической ячейке в ходе анализа может изменяться на несколько десятых долей вольта. В этих условиях изменение генераторного [c.106]

    Этот недостаток устранен в другой схеме (рис. 90, б). Здесь выпрямители включены непосредственно в плечи моста. В этом случае используется прямолинейный участок характеристики выпрямителей, так как они все время пропускают ток значительной силы. Каждое плечо с выпрямителями состоит из двух ветвей. В каждую ветвь включен выпрямитель в направлении, противоположном соседней ветви, чем достигается прохождение через электролитическую ячейку Э переменного тока при наличии в каждой из ветвей пульсирующего тока. Таким образом, по измерительной ветви протекает пульсирующий ток, а по сопротивлению Я, шунтируемому конденсатором большой емкости С,—ток постоянной составляющей. Сила тока измеряется стан- [c.146]

    Электролиз раствора хлорной меди можно провести в Ц-об-разной трубке с угольными электродами (см. раздел Электролитическая диссоциация ), В трубку наливают 5%-ный раствор хлорной меди и пропускают постоянный ток в течение 10—15 мин. Источником тока может быть аккумулятор. Можно использовать и пульсирующий ток, полученный с помощью алюминиевого выпрямителя. По окончании электролиза цепь размыкают и осто- [c.79]

    Н-образный стеклянный сосуд с двумя медными электродами, из которых один смонтирован со стеклянной трубкой, имеющей капиллярный ко нец. 2. Распределительный щиток с рубильником и реостатом. 3. Селеновый выпрямитель. 4. Аккумулятор. 5. Миллиамперметр ла 100 ма. 6. Электролитический ключ (сифон). 7. Стандартный каломельный электрод. 8. Стандартный щелочной электрод. 9. Промежуточный сосуд. 10. Прерыватель. 11. Выключатель тока (2 щт.). 12. Нуль-инструмент. [c.136]

    Электролитическая бюретка подает титрующий раствор, причем расход титранта в единицу времени строго пропорционален току электролиза. Поскольку бюретка питается от стабилизированного выпрямителя, при заданном токе расход титранта прямо пропорционален времени, в течение которого бюретка находится подтоком. Скорость подачи титрующего раствора может регулироваться в широких пределах. Необходимо отметить, что, несмотря на непрерывность процесса электролиза раствора в бюретке, титрант подается в ячейку дискретно (каплями), причем объем одной капли не превышает 0,02 мл. Ток электролиза контролируется стрелочным прибором на передней панели. [c.457]

    В главах П1—VHI лри описании процессов электролитического рафинирования металлов или их электролитического получения из растворов приведены данные о силах тока, применяемых на отдельных установках. Сила тока в цепи колеблется в зависимости от масштабов производства от 2000 до 25000 а. Ее подбирают из расчета получения стандартного напряжения в электрической цепи последовательно включенных ванн. С другой стороны, чем больше сила тока на ваннах, тем экономичнее их обслуживание. В диапазоне напряжений 100—250 в применяют моторгенераторы или контактные преобразователи для больших напряжений (350—800 в) используют ртутные преобразователи различных систем. В последние годы начинают применять батареи германиевых или кремниевых выпрямителей на любые напряжения до 1000 и на силы тока до 100 Ка. [c.591]

    Токсикологическое значение. Металлическая ртуть, а также ее соли имеют широкое и разнообразное применение в производстве люминесцентных, кварцевых и радиоламп, при изготовлении контрольно-измерительных приборов, ртутных выпрямителей, ртутных насосов. Широко используется при электролитическом способе получения хлора, калибровании химической посуды, извлечении золота и серебра из руд и для многих других целей. Из солей ртути особенно широкое применение имеет сулема, несколько меньшее — нитрат ртути, сульфид ртути, каломель, амидохлорная ртуть, сулема, йодная ртуть, цианистая ртуть, оксицианистая ртуть, желтая окись ртути, некоторые органические препараты ее, такие, как промерон, меркузал и др. [c.345]

    ТАНТАЛ (Tantalum назван по имени героя древнегреческой мифологии Тантала) Та — химический элемент V группы 6-го периода периодической системы элементов Д. И, Менделеева, п. н. 73, ат. м. 180,9479. Т. открыт в 1802 г. Экебергом. Природный Т. состоит из двух стабильных изотопов, известны 13 радиоактивных изотопов. Т.— металл серого цвета со слегка синеватым оттенком, т. пл. 2850° С, твердый, очень устойчив к действию кислот и других агрессивных сред, превосходит в этом даже платину. Получают Т. из тантало-ниобиевых руд. Т. в соединениях проявляет степень окисления +5. Используется для изготовления химической посуды, фильер в производстве искусственного во-токна, в хирургии для скрепления костей при переломах, для изготовления жаростойких, твердых и тугоплавких сплавов для ракетной техники и сверхзвуковой авиации, для изготовления электролитических конденсаторов, выпрямителей и криотронов, нагревателей высокотемпературных печей, арматуры электродных ламп, в ювелирном деле и др. [c.244]

    Такие пленки используют в электролитических конденсаторах и выпрямителях, но они не дают заметного улучиюния антикоррозионных свойств алюминия. [c.223]

    Много ванадия как такового, а также в виде феррованадия используется для улучшения свойств специальных сталей, идущих на изготовление паровозных цилиндров, автомобильных и авиационных моторов, осей и рессор вагонов, пружин, инструментов и т. д. Малое количество ванадия подобно титану и марганцу способствует раскислению, а большое количество увеличивает твердость сплавов. Ниобий и тантал, как дорогие металлы, применяют для легирования сталей только в тех случаях, когда необходима устойчивость по отношению к высокой температуре и активным реагентам. Сплавы алюминия с присадкой ванадия используются как твердые, эластичные и устойчивые к действию морской воды материалы в конструкциях гидросамолетов, глиссеров, подводных лодок. Ниобий и ванадий — частые компоненты жаропрочных сплавов. Ниобий применяют при сварке разнородных металлов. VjOg служит хорошим катализатором для получения серной кислоты контактным методом. Свойства Та О., используются при приготовлении из него хороших электролитических танталовых конденсаторов и выпрямителей, лучших, чем алюминиевые (гл. XI, 3). [c.335]

    Образование плохо проводящей оксидной пленки ири анодном действии тока испол1,зуют для изготовления электролитических конденсаторов (отличающихся большой электрической емкостью) и электролитических выпрямителей (рис. 88). В электролитической ванне находится водный раствор NaH Og. Электроды — алюминий и свинец. При включении такого выпрямителя в сеть пе- [c.351]

    Погрешность от диффузионных потенциалов при одинаковых растворах электролита ( i a) и ионах одинаковой подвижности (1а 1и) невелика. Это и является причиной частого применения электролитических проводников (солевых мостиков) в виде насыщенных растворов КС1 или NH4NO3. Однако значения I в табл. 2.2 справедливы только для разбавленных растворов. Для концентрированных растворов следует принимать во внимание выражение (2.14). По этим причинам выражение (3.4) дает лишь ориентировочную оценку диффузионных потенциалов, которые впрочем обычно не превышают 50 мВ. Наблюдаемые иногда более значительные расхождения между двумя электродами сравнения в одной и той же среде обычно могут быть объяснены влиянием посторонних электрических полей или же коллоидно-химическими эффектами поляризации твердых компонентов среды, например песка [2] (см. также раздел 3.3.1.). Большие изменения в химическом составе, например в грунтах и почвах, в случае электродов сравнения с концентрированными солями отнюдь не ведут к ощутимым изменениям диффузионных потенциалов. Напротив, у простых металлических электродов, которые иногда применяются в качестве измерительных зондов для выпрямителей с регулируемым потенциалом, следует ожидать изменений потенциала, обусловленных средой. Эти устройства являются в принципе не электродами сравнения, а просто металлами, имеющими в соответствующей среде возможно более постоянный стационарный потенциал. Этот потенциал обычно получается тем стабильнее, чем активнее данный металл, что наблюдается например у цинка, но не у специальной стали. [c.84]

    Электрокоагуляционная очистка воды производится в электролизерах в основном с вертикальным расположение.м электродов, вынолняе.мых чаще всего в виде блока прямоугольных пластин толщиной 5—10 мм. Соединение электродов осуществляется по монополярной схеме (рис. 8.2). Возможно соединение их по биполярной и комбинированной схемам. При отсутствии источников постоянного тока питание электролизеров осуществляется выпрямленным током, для чего в составе установки предусматриваются выпускаемые промышленностью выпрямители. С целью обеспечения безопасности paбoтa oщeгo персонала па одну электролитическую ячейку не должно подаваться напряжение более 36 В. [c.197]

    Л7—25 ком сопротивление переменное непроволочное Л15—3,3 мгом сопротивления переменные проволочные и / й=5,5 ком конденсаторы бумажные С , Се, С7—1 мкф, 200 ег, С4,— 0 мкф, 200 в конденсаторы электролитические Сг и С3—10 мкф, 450 в С5—0,05 мкф реле электромагнитное электромагнитный клапан Ра, Рд и Р4—МКУ-4В ключи XI—тумблер двойной Кг. Хз—кнопки К4—тумблер Гр—силовой трансформатор Д—синхронный электродвигатель ВН-1 МА—миллиамперме1р М-61 В—выпрямитель на ДГ-Ц27  [c.188]

    Потенциостат фирмы Analyti al Instruments, In . (США), является прибором электромеханического типа. Блок-схема этого прибора приведена на рис. 1. Выходной сигнал блока выпрямитель-фильтр прикладывается между рабочим и вспомогательным электродами электролитической ячейки. Система выпрямитель-фильтр питается напряжением переменного тока через автотрансформатор, управляемый электродвигателем, и понижающий трансформатор. Разность потенциалов между рабочим электродом и электродом сравнения непрерывно сравнивается с эталонным потенциалом, поддерживаемым на десятиоборотном потенциометре. Эта разность потенциалов усиливается сервоусилителем, который заставляет двигатель, управляющий автотрансформатором, реагировать [c.27]

    Н-образный стеклянный сосуд с двумя электродами, из которых один никелевый с прилегающей к нему стеклянной трубкой с капиллярным концом второй электрод — медный или латунный. 2. Р,аспределктслы1ый щиток с рубильником и реостатом. 3. Селеновый выпрямитель. 4. Аккумулятор. 5. Миллиамперметр на 100 ма. 6. Электролитический ключ. 7. Стандартный каломельный электрод. 8. Промежуточный сосуд. 9. Прерыватель. 10. Выключатели тока (2 шт.). И. Нуль-инструмент. 12. Компенсационная установка. 13. Ванна с холодной водой. [c.140]

    Железные катоды 40X26 мм (4 шт.). 2. Стеклянные ванны 100X100X100 мм (4 шт.). 3. Распределительный щиток с рубильником и реостатом. 4. Селеновый выпрямитель. 5. Миллиамперметр на 500 ма. 6. Микроскоп. 7. Ванны с холодной водой (2 шт.). 8. Н-образный стеклянный сосуд с двумя электродами, из которых один медный или латунный с прилегающей к нему стеклянной трубкой с капиллярным концом, второй — цинковый. 9. Аккумулятор. 10. Миллиамперметр на 200 ма. И. Электролитический ключ. 12. Стандартный каломельный электрод. 150 [c.150]

    I — электрод 2 — потенциометр з — вибропреобразовательный каскад 4, — трехкаокадный усилитель переменного тока 6 — двигатель в — селеновый выпрямитель 7 —электролитическая ячейка — катодный вольтметр 9 — трансформатор и выпрямитель [c.50]


Смотреть страницы где упоминается термин Выпрямители электролитические: [c.216]    [c.102]    [c.132]    [c.417]    [c.446]    [c.100]    [c.79]    [c.146]    [c.167]    [c.215]    [c.51]    [c.495]    [c.782]    [c.236]   
Общая химия (1964) -- [ c.236 ]

Физическая химия Том 2 (1936) -- [ c.429 ]

Техника физико-химического исследования Издание 3 (1954) -- [ c.225 ]




ПОИСК







© 2025 chem21.info Реклама на сайте