Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Столкновения ионизирующие

    Гамма-лучи представляют собой проникающие электромагнитные колебания с длиной волны приблизительно от 0,005 до 0,4 А и с энергией 0,05—5 Мэе. Они распространяются со скоростью света их проникающая способность гораздо выше, чем у самого жесткого рентгеновского излучения длина пробега в воздухе составляет несколько километров. Гамма-лучи в отличие от альфа- и бета-излучения ионизируют материю косвенно посредством электронов, которые при столкновении с фотонами гамма-излучения получают часть их энергии и отрываются от атомов. Эти электроны при столкновениях с атомами и вызывают ионизацию. Бета-распад часто сопровождается гамма-излучением. Методы определения и измерения интенсивности радиоактивного излучения основаны на его ионизирующем действии. На этом же явлении основаны и принятые единицы дозы разных видов излучения. [c.644]


    Таким образом, потоки заряженных частиц производят ионизацию и возбуждение молекул облучаемого вещества при столкновениях, а при облучении нейтральными частицами или фотонами в,основном первоначально образуются заряженные частицы, которые далее осуществляют ионизацию и возбуждение молекул. При этом число ионизаций (и возбуждений), производимых вторичными заряженными частицами на своем пути, значительно больще ионизирующей способности первичной (нейтральной) частицы. Потеря энергии ионизирующими частицами носит дискретный характер, вследствие чего в веществе образуются микрообласти с высокой плотностью поглощения энергии. [c.107]

    При столкновении ионизирующей частицы (электрона, укванта и т. д.) с молекулой происходит ее ионизация или возбуждение электронного состояния. Выбитый из молекулы электрон вызывает в свою очередь ионизацию или возбуждение. Соединение электрона с положительно заряженным ионом образует электронно-возбужденную молекулу, которая распадается на свободные радикалы. Реакции ионов, электронов, возбужденных молекул и радикалов друг с другом и с молекулами вещества составляют группу первичных радиационно-химических реакций. [c.262]

    Для выяснения механизма образования экспериментально наблюдаемого масс-спектра в настоящей работе использовались временные константы, начиная с момента столкновения ионизирующего электрона с молекулой вплоть до распада образовавшегося молекулярного иона на ионы и нейтральные частицы. [c.4]

    Целесообразно рассмотреть механизм диссоциативной ионизации молекул во времени, начиная с момента столкновения ионизирующего электрона с молекулой, вплоть до распада последней на ионы и нейтральные частицы. [c.6]

    Несколько упрощенно можно резюмировать первичный радиационно-химический акт в парах воды следующим образом допустим, что для создания одной пары ионов требуется в среднем 35 eV и что только часть, например 50%, образующихся в конечном счете ионов возникает в результате первичных столкновений. В небольшой части столкновения ионизирующей частицы с молекулами воды будут упругими, но большинство из них будут неупругими и будут приводить либо к ионизации с образованием Н.2О+, Н+ (и ОН), 0Н+ (и Н), либо к возбуждению, вероятно, с диссоциацией на Н (2S) и ОН в 2П- или Е-состоянии. Электрон, выбитый при первичной ионизации, будет в среднем иметь [c.105]

    Сигнал можно значительно усилить, если увеличить напряжение на центральном электроде до значения, при котором электроны, возникающие при первичной ионизации, сильно ускоряются и при столкновении ионизируют другие молекулы. Количество образующихся при этом ионов зависит от энергии фотона рентгеновского излучения, поэтому ток будет пропорционален энергии фотона. Прибор, работающий в таком режиме, называется газовым пропорциональным счетчиком. Он обладает быстродействием, достаточным для счета отдельных фотонов. При дальнейшем увеличении напряжения наступает насыщение, т. е. все импульсы имеют одну и ту же величину независимо от энергии падающего фотона. Детектор, работающий в этом [c.229]


    Ионизационные радиоактивные детекторы, работающие по методу измерения поперечного сечения ионизации (радиологические детекторы). Метод измерения поперечного сечения ионизации основан на том, что ток ионизации, возникающий в газе, облучаемом радиоактивным источником, прямо пропорционален так называемому поперечному сечению ионизации, которое выражает собой вероятность ионизации в результате столкновения ионизирующего агента с нейтральными атомами или молекулами. [c.52]

    М. Метод прерывистого освещения. Энергия активации, необходимая для инициирования так называемых термических реакций, приобретается разлагающейся молекулой в результате столкновений с другими молекулами. Однако реакции этого типа можно инициировать и при таких температурах, при которых их обычная ( термическая ) скорость очень мала. Энергия активации в подобных случаях получается за счет света (фотохимические реакции) и ионизирующих излучений (например, альфа-, бета-, гамма- или рентгеновских лучей) имеет место и сенсибилизация уже возбужденными молекулами (см. разд. V.43). [c.103]

    Способ распыления ионным пучком показан на рис. 10.10, а. Инертный газ, например аргон, ионизируется в холодном катодном разряде, и полученные ионы ускоряются в ионной пушке до энергии 1—30 кэВ. Ионный пучок для бомбардировки мишени можно создать либо с помощью коллимации, либо путем фокусировки с помощью обычной системы линз. Высокоэнергетические ионы бомбардируют атомы мишени и передают импульс при упругом столкновении, в результате чего лежащие вблизи поверхности мишени атомы выходят из мишени с энергиями от О до 100 эВ. Такие распыленные атомы затем осаждаются на образце и на всех поверхностях, лежащих в пределах прямой видимости с мишени. Достоинством такой схемы является то, [c.200]

    Характер взаимодействия ионизирующего излучения е веществом определяется параметрами частиц и свойствами вещества. При взаимодействии заряженных частиц со средой основной причиной потерь энергии являются столкновения с атомами (электронами и ядрами), приводящие к ионизации и многократным рассеяниям. Потеря энергии электронами происходит также в результате радиационного торможения, а для тяжелых частиц (протон, а-частица) - потенциального рассеяния на ядрах и ядерных реакций. При взаимодействии 7-излуче ния со средой потеря энергии объясняется Комптон-эффектом (рассеяние 7-кванта на электронах), фотоэффектом (поглощение у-кванта с передачей энергии электрону), образованием электронно-позитронных пар (при энергиях V-квантов 1,02 МэВ) и ядерных реакций (при 10 МэВ). [c.107]

    Механизм образования положительной короны явно отличается от механизма образования отрицательной короны, к свойствам положительной короны следует отнести более низкое напряжение перекрытия и малое образование озона. Электроны в газе движутся к зоне короны рядом с коронирующим электродом, где образуются лавины электронов для поддержания зоны короны. Положительные ионы газа, образованные этими электронными лавинами, движутся от электрода с гораздо меньшей скоростью, чем электроны в зоне отрицательной короны, следовательно во время их движения к осадительному электроду происходит меньше ионизирующих столкновений. При низкой напряженности поля, существующего рядом с этим электродом, они получают небольшое ускорение, поэтому в результате катодной бомбардировки происходит эмиссия малого числа электронов, и большая часть тока передается положительно заряженными ионами газа. Так как в зоне короны с высокой напряженностью поля происходит меньшее число ионизирующих столкновений, то наблюдается меньшее образование озона и оксидов азота, чем в зоне отрицательной короны. [c.439]

    В газовых лазерах для получения инверсии заселенности обычно используется электрическое возбуждение. Молекулы и атомы при столкновениях с высокоэнергетическими электронами возбуждаются и ионизируются. При этом, ввиду того что правила оптического отбора здесь неприменимы, можно осуществить заселение запрещенных метастабильных состояний. Действие лазера становится возможным за счет переходов в нижние состояния. Два важных примера — это азотный лазер, который является импульсным, и аргоновый ионный лазер, работающий в основном в непрерывном режиме. Характерные процессы описываются реакциями (5.50) + (5.51) и (5.52) + + (5.53)  [c.144]

    Можно объяснить наблюдаемые явления, если допустить, что под действием разности потенциалов нейтральные частицы газа диссоциируют на заряженные частицы одни из них положительные, другие отрицательные,— газ ионизируется. Под действием электрического поля заряженные частицы движутся ускоренно к катоду и аноду соответственно, приобретая значительную кинетическую энергию. Энергия, в форме световой, выделяется при столкновении двух частиц противоположных знаков тогда давление газа должно быть достаточным для осуш ествления большого числа столкновений. Когда давление газа достигает 10 мм рт. ст., среднее расстояние между частицами велико вероятность столкновений заметно уменьшается. Положительные частицы свободно движутся в электрическом поле. Они имеют относительно большую массу и обладают высокой кинетической энергией. При бомбардировке ими катода атомы материала катода испускают лучи. Эти катодные лучи состоят из отрицательных частиц, аналогичные частицы возникают при ионизации газа и вливаются в пучок катодных лучей. Катодное излучение было подробно изучено Круксом и Перреном Е 1895 г. Оно обладает, в частности, следующими свойствами  [c.8]


    Итак, скорость химической реакции определяется не числом общих столкновений в единицу времени, а числом столкновений активных молекул реагирующих веществ. Активация молекул происходит в результате соударений при тепловом двил ении, а также за счет других внешних причин действия лучистой энергии, электрического разряда, ультразвуковых колебаний, ионизирующих излучений и т. д. [c.125]

    Описанному методу близок метод ионной микроскопии [9], аппаратурное оформление которого такое же, с той лишь разницей, что острие иглы помещено в атмосфере гелия при низком давлении. Газ ионизируется на поверхности в степени, определяемой работой выхода, а возникающие в результате ионы ускоряются радиальным электрическим полем так, чтобы стало возможным их столкновение с экраном. Преимущество данного метода перед методом эмиссионной микроскопии — в увеличении разрешающей способности, которая позволяет различать отдельные атомы поверхности. [c.447]

    Кроме тепловых, в ЭЛУ имеют место значительные электрические потери. Не все электроны пучка достигают поверхности ванны. Несмотря на вакуум, в камере печи имеются газовые частицы, сталкиваясь с которыми, электроны пучка ионизируют их и отдают им свою энергию образующиеся положительные ионы направляются к катоду и бомбардируют его. Этот процесс взаимодействия электронов пучка с остаточным газом сопровождается потерями энергии. Если давление остаточных газов в камере составляет 10- — Па, то эти потери невелики (1 — 1,5 %), если же давление увеличивается до 0.,1 Па, то потери энергии на столкновения электронов с атомами газа могут вырасти до 10 — 30% при этом камера начинает светиться, а в электронной пушке обычно происходит пробой, приводящий к отключению установки. [c.254]

    Под относительной ионизацией 8 понимают число пар заряженных частиц, образованных свободным электроном на 1 см своего пути. Величина 5 зависит от давления газа и энергии (скорости) летящего электрона. При малых энергиях 5 = = 0, так как Ке<А величина 5 резко возрастает, проходит максимум и вновь начинает уменьшаться. Так, при р= мм рт. ст. в воздухе и Л е 10 эв 5 = 6-10-2 (один акт ионизации на 16 см пути) при /Се = = 10 эв 5 = 0,33 (один акт ионизации на 3 см пути) при 7Се=140 эв 5=10 (10 актов ионизации на 1 см пути). При дальнейшем уменьшении энергии электронов 5 вновь уменьшается. Объясняется это тем, что для быстрых электронов время взаимодействия с нейтральной частицей мало и кулоновские силы не успевают выбить связанный электрон с орбиты. Вторичные электроны, образованные при соударениях, в свою очередь при столкновении с нейтральными частицами могут их ионизировать, если их энергия достаточно велика. Таким образом, первичный электрон достаточно большой энергии ионизирует нейтральные частицы не только сам, но и через образованные им вторичные электроны. [c.21]

    Освобожденные вследствие термической или фотоионизации электроны при столкновении с нейтральными частицами также могут их ионизировать. [c.22]

    Интересное подтверждение идеи Бора о стационарных состояниях атомов и молекул было получено в результате проведения опытов ло изучению соударений с электронами эти опыты были выполнены в период 1914—1920 гг. Джеймсом Франком (1882—1964) и Густавом Герцем (1887—1963). Им удалось показать, что при столкновении быстро движущегося электрона с атомом или молекулой он отражается, теряя лишь небольшое количество кинетической энергии, если только его скорость недостаточно велика, чтобы вывести атом или молекулу из нормального электронного состояния и создать возбужденное электронное состояние или даже ионизировать данный атом или молекулу, выбив один из электронов. [c.123]

    И.— химически активные частицы, вступающие в р-ции с атомами, молекулами и между собой. Часто И.— промежут. частицы в хим. р-циях. Й. в газах образуются при столкновении молекул (атомов) с частицами оольших энергий, при фотоионизации, действии ионизирующих излучений или сильных электрич. полей. Столкновения И. с молекулами приводят к ионно-мол. реакциям. В р-рах И. появляются в результате электролитич. диссоциации при этом возникают комплексы И. с молекулами р-рителя (см. Сольватация), определяющие особенности р-ций в р-рах. [c.227]

    Масс-спе к тральный анализ газов основан яа разделении по массам ионизованных молекул газов в отклоняющем поле. Существуют три различных метода получения масс-спектров. Соответственно различаются и конструкции приборов. Во всех методах сообщение заряда молекулам анализируемого газа производится при их столкновении с быстры.ми электронами. Последние ионизируют нейтральные молекулы газа, выбивая один или несколько электронов с их орбит. При организации анализа необходимо иметь в виду непостоянство состава газов, выделяющихся из масла, вследствие контакта между ними в период их нахождения в масле и различной степени растворимости. [c.238]

    Процессы ионизации и возбуждения, происходящие при прохождении ионизирующей частицы через в-во н приводящие к пространств, неоднородности в-ва, в радиац. химии чаще всего отражаются величиной ЛПЭ , равной линейной тормозной способности среды, к-рая обусловлена полной потерей энергии частицы при столкновениях. [c.152]

    Химическая ионизация. При химической ионизации (ХИ) вещество ионизируется при газофазной ион-молекулярной реакции. Для этого в источник ионов при относительно высоком давлении (0,01-2 мм рт.ст.) вводится газ-реагент (обычно метан, изобутан, аммиак или вода), из которого в результате ионизации под действием электронного удара генерируются ионы. Определяемые молекулы ионизируются непосредственно за счет ряда реакций с газом-реагентом, при которых во время столкновений на молекулы аналита переносится небольшая порция энергии с достаточно узким распределением. Это объясняет, почему ХИ часто называют мягким методом ионизации. Мягкая ионизация приводит к меньшей фрагментации и поэтому к большей интенсивности пиков молекулярных ионов по сравнению с ЭУ. Низкий [c.601]

    Некоторые электроны обладают энергией, достаточной для ионизации нейтральных молекул и атомов (около 11 эВ). При столкновении с ними нейтральные частицы переходят в возбужденное состояние, а затем могут ионизироваться или диссоциировать. Механизмы таких реакций изучены слабо. Схематично диссоциацию молекулы типа АВ (или А,) при столкновении с электроном е, имеющим достаточно высокую кинетическую энергию, можно представить следующим образом  [c.73]

    Когда электроны попадают в область отрицательного свечения, они по существу обладают энергией, соответствующей полному катодному падению потенциала. Эта энергия затем теряется в серии столкновений, ионизирующих или возбуждающих атомы газа (при упругих столкновениях энергия электронов фактически не расходуется). В конце концов энергия электронов уменьшается настолько, что при последующих столкновениях они уже не могут ионизовать атомы газа. Соответствующий участок разрядного промежутка определяет дальнюю границу отрицательного свечения. Поскольку здесь не происходит ионизации газа, электроны накапливаются в этой области и образуют небольшой отрицательный пространственный заряд. Энергии электронов недостаточно даже для возбуждения атомов газа, потому эта область и является темной. Она получила название фарадеевого темного пространства. [c.409]

    Высоковозбуждепные атомы, как показано в работе [3301, могут ионизироваться с очень большим сечением при столкновениях с нейтральными частицами. Например, процесс Аг + = Аг + + ЗГё имеет сечение —1,7-10 см при температуре, близкой к комнатной. Интересный тин реакций с участием высоковозбужденных молекул обнаружен в работе 1364] Н + Н, = н + Н + е. [c.195]

    У незаряженных нейтронов не может быть электрического взаимодействия они останавливаются при столкновении с ядром подобно биллиардным щарам. Бомбардируемые атомы отскакивают со скоростью, достаточной для потери орбитальных электронов, и прохо-. дят через поглотитель в виде тяжелых заряженных частиц. Нейтроны могут быть также остановлены в результате поглощения атомными ядрами с сбразсванием новых, обычно радиоактивных, изотопов, но при облучении этот процесс, как правило, не имеет большого значения. Таким образом, все типы ионизирующего излучения приводят к образованию заряженных частиц большой энергии, которые в конечном итоге теряют ее, образуя ионизированные и возбужденные атомы или молекулы. Конечный результат такой ионизации и возбуждения зависит от природы химических связей в облученном материале. [c.157]

    Так как нейтрон не имеет заряда, то его проницаемость очень велика. В камере Вильсона он не оставляет следов, не ионизирует воздуха, не вызывает флуоресценции и об его присутствии и энергии судят по пробегу тех заряженных частиц, например, протонов, с которыми он эластически сталкивается (эластическим столкновением называется столкновение, аналогичное столкновению, например, двух бильярдных шаров). [c.66]

    Голдштейн воспользовался разрядной трубкой с просверленным катодом если вакуум был не слишком высок, то позади катода он наблюдал излучение. Как уже указывалось, если приложить разность потенциалов, то молекулы нейтрального газа ионизируются с образованием положительных и отрицательных частиц. Положительные ионы могут возникнуть и при столкновении электронов с нейтральными атомами газа. Эти ионы ускоренно движутся к катоду они образуют пучок положительных лучей, которые называются каналовыми лучами. Их положительный заряд подтверждается искривлением траектории пучка этих частиц при прохождении через электрическое или магнитное поле. [c.14]

    Дуговой разряд по длине можно подразделить на три области среднюю—столб дуги, прикатодную и прианод-ную области В столбе дуги потенциал растет линейно по направлению от одного конца к другому в приэлект-родных областях, протяженность которых весьма мала (порядка 10 = см), он изменяется скачком. Между тем-эти приэлектродные области, в первую очередь прика-тодная, образуют те потоки заряженных частиц, которые в столбе дуги ионизируют газ. Под действием бомбардирующих катод ионов он разогревается и находящиеся в нем, как во всяком металле, свободные электроны получают такие скорости теплового движения, что оказываются в состоянии преодолеть потенциальный барьер у поверхности катода и ВЫЙТИ В дуговой промежуток, где они ускоряются электрическим полем и при столкновении с нейтральными частицами ионизируют их толчком. Такая термоэлектронная эмиссия требует высокой температуры катода (более 2000 К), поэтому она возможна лишь тогда, когда катод выполнен из тугоплавкого материала. Катод из менее тугоплавкого материала интенсивно испаряется, и электроны выходят из окружающего катод раскаленного облака пара. [c.182]

    Ток несамостоятельного разряда обычно мал. Так, для нашего случая при расстоянии между электродами 5 см плотность тока насыщения равна 8-10 2 а1см . При дальнейшем увеличении напрял ения насыщение вновь переходит в режим роста тока (участок 2—3 на рис. 1-1). Это значит, что заряженные частицы достигли под действием электрического поля такой скорости, когда кинетическая энергия электронов достаточна для того, чтобы при столкновении с нейтральными частицами газа ионизировать кх. Новые заряженные частицы также направляются к электродам и на своем пути могут снова ионизировать частицы. Количество заряженных частиц растет лавинообразно. В этой фазе разряд самостоятелен, т. е. начавщись под действием какого-либо ионизатора, он далее протекает без помощи последнего. -Условием существования самостоятельного разряда должна быть настолько интенсивная ионизация, чтобы вместо попадающих на электроды, теряемых в окружающую среду и рекомбинирующих в разряде частиц появилось такое же количество новых заряженных частиц и чтобы по крайней мере одна из них достигала электрода. [c.19]

    В большинстве детекторов, регистрирующих частицы, рассеянные под углом 0 к направлению одного из исходных пучков, измеряют ток частиц. Если частицы электрически нейтральны, их ионизируют на горячей нити детектора или электронным ударом с последующей масс-спектральной регистрацией. Для обеспечения достаточной чунсгиитель-ности метода стремятся к достижению в камере, где происходят столкновения и рассеяние частиц, выс0К010 вакуума (10 —10- Па) и макс. плотности пересекающихся пучков, применяют модуляцию пучков. [c.350]

    ИОНИЗАЦИИ ПОТЕНЦИАЛ, см. Потенциал ионизации. ИОНИЗЙРУЮЩИЕ ИЗЛУЧЕНИЯ, потоки фотонов или частиц, взаимод. к-рых со средой приводит к ионизации ее атомов или молекул. Различают фотонное (электромагнитное) и корпускулярное И.и. К фотонному И.и. относят вакуумное УФ и характеристическое рентгеновское излучения, а также излучения, возникающие при радиоактивном распаде и др. ядерных р-циях (гл. обр. 7-излучение) и при торможении заряженных частиц в электрич. или магн. поле - тормозное рентгеновское излучение, синхротронное излучение. К корпускулярному И. и. отиосят потоки а- и Р-частиц, ускоренных ионов и электронов, нейтронов, осколков деления тяжелых ядер и др. Заряженные частицы ионизируют атомы или молекулы среды непосредственно при столкновении с ними (первичная ионизация). Если выбиваемые при этом электроны обладают достаточной кинетич. энергией, они также могут ионизировать атомы или молекулы среды при столкновениях (вторичная ионизация) такие электроны наз. 5-электрона.ми. Фотонное излучение может ионизировать среду как непосредственно (прямая ионизация), так и через генерированные в среде электроны (косвенная ионизация) вклад каждого из этих путей ионизации определяется энергией квантов и атомным составом среды. Потоки нейтронов ионизируют среду лишь косвенно, преим. ядрами отдачи. [c.254]

    Хим. ионизация осуществляется при столкновении молекул исследуемого в-ва с иоиами реагентного газа, в качестве к-рого м. б. индивидуальные в-ва или их смеси. Реагентный газ находится в источнике под давлением 65-130 Па, парциальное давление исследуемого в-ва 0,1-0.01 Па. При бомбардировке такой смеси электронами с энергией 70-500 эВ преим. ионизируются молекулы реагентного газа образовавшиеся положительно заряженные ионы в результате ионно-молекулярных столкновений с неионизи-рованными молекулами реагентного газа преобразуются в реактантные ионы, к-рые в свою очередь взаимод. с молекулами исследуемого в-ва и ионизируют их, образуя ионы МН . Наиб, употребительные реагентные газы и их характеристики приведены в таблице. [c.659]

    Физическая стадия определяет потери энергии ионизирующего излучения при неупругих столкновениях с частицами среды. Эти потери характеризуются т. наз. линейной передачей энергии (ЛПЭ)-энергией, переданной среде ионизирующей частицей в заданной окрестности ее траектории на единицу длины пролета. Значения ЛПЭ варьируются в зависимости от природы излучения и его энергии в щироких пределах от 0,2 эВ/нм для высокоэнергетич. квантов [c.152]

    Радиационно-химические процессы происходят при действии ионизирующих излучений высокой энергии возбудителями могут служить электромагнитные излучения (рентгеновское и у-излучение) и заряженные частицы высокой энергии (ускоренные электроны, а- и р-частицы, протоны и др.). Механизм воздействия ионизирующих излучений на реагирующую систему состоит в передаче энергии реагирующим веществам сперва происходит столкновение заряженных частиц с молекулами реагентов с образованием нестабильных активированных молекул, которые распадаются на атомы или взаимодействуют с невозбужденными молекулами, образуя ионы и свободные радикалы. При взаимодействии ионов и свободных радикалов друг с другом или с непревра-щенными молекулами возникают конечные продукты реакции. [c.254]

    Ионизация электронным ударом. В ионизации электронным ударом (ЭУ) молекулы пробы, попадающие в источник ионов из газохроматографической колонки, ионизируются потоком тепловых электронов, эммитируемых из вольфрамовой или рениевой нити накала (катод) и ускоряемых в сторону анода. Столкновение электронов с молекулами пробы, во время которых часть кинетической энергии электронов передается молекулам, приводит к их возбуждению, фрагментации и ионизации. Поскольку распределение внутренней энергии непосредственно влияет на вид масс-спектра и сильно зависит от энергии электронного пучка Е и последняя обычно устанавливается на стандартном уровне е1 = 70 эВ. [c.601]


Смотреть страницы где упоминается термин Столкновения ионизирующие: [c.27]    [c.102]    [c.187]    [c.12]    [c.37]    [c.37]    [c.586]    [c.224]    [c.52]   
Химия (1986) -- [ c.45 ]

Химия (1979) -- [ c.45 ]

Химия (1975) -- [ c.46 ]




ПОИСК





Смотрите так же термины и статьи:

Столкновения



© 2024 chem21.info Реклама на сайте