Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия ионизации отдельных молекул

    Поскольку электроны полностью заполненных уровней наиболее прочно связаны с ядром, то полностью заполненные оболочки являются наиболее устойчивыми. Энергии ионизации веществ с полностью заполненным внешним уровнем са.мые большие. Энергия уровня, полностью занятого электронами, оказывается значительно ниже энергии уровня, заполненного лишь частично. Поэтому в образовании химической связи принимают участие только электроны незаполненных внешних уровней. Этот вывод позволяет сразу объяснить сложность получения соединений элементов главной подгруппы восьмой группы, на внешнем уровне которых 8 электронов, т. е. полностью заполнены его 5- и р-подуровни и нет электронов на с1-подуровне. Устойчивость заполненного валентного уровня объясняет химическую инертность этих веществ. Даже их молекулы состоят из одного атома. Взаимодействия между отдельными атомами очень слабы. Поэтому при обычных условиях это - газы, и называют их инертными, а иногда благородными. Устойчивость заполненных электронных уровней иногда формулируют как правило октета, согласно которому наиболее устойчивыми являются уровни. [c.50]


    Теория Аррениуса не объясняет причины, вызывающие ионизацию в растворах. Между тем известно, что для ионизации электролитов требуется большее количество энергии. Поясним сказанное на примере раствора хлорида калия. Энергия связи между ионами в отдельной молекуле равна е /г, где е — заряд иона и г — расстояние между центрами ионов в молекуле. При г=0,279 нм и е=4,803-10 ° энергия связи Л а молекул N — постоянная Авогадро) равна приблизительно 5000 кДж/моль. [c.366]

    Таким образом, механизм диссоциации ионов в электронно-воз-бужденных состояниях определяется соотношением скоростей их распада и дезактивации в более низкоэнергетические состояния. В процессе внутренней конверсии энергии возможна локализация колебательной энергии на отдельной связи. Такая возможность реализуется, если колебания связи являются ангармоническими [21]. Вероятность возбуждения колебаний увеличивается с ростом ангармоничности и конвертируемой энергии. Неравновесное колебательное возбуждение связей в процессе внутренней конверсии должно приводить к преимущественному разрыву их. Из приведенных данных следует, что реальный процесс распада электронно-возбужденных ионов значительно сложнее, чем предсказывает квазиравновесная теория, поэтому она может иметь лишь ограниченное применение. Квазиравновесная теория соответствует такой физической модели процесса, когда скорость деградации электронной энергии иона значительно превышает скорость его распада в электронно-возбужденном состоянии и конвертируемая энергия равновероятно распределяется по всем колебательным модам системы, Поскольку при ионизации молекул электронами с энергией 50—100 эВ образуются ионы в различных электронных состояниях, устойчивость молекул в условиях радиолиза является функцией распределения ионов по состояниям, констант скоростей распада в этих состояниях, констант скоростей безызлучательного переноса энергии и (при давлениях, обычно используемых при радиолизе, >100 Па) констант релаксации электронного и колебательного возбуждения. [c.102]

    Фотохимические процессы—это процессы, в которых поглощение излучений ведет к образованию возбужденных молекул, инициирующих затем в свою очередь вторичные реакции с образованием атомов, свободных радикалов или молекул. Размер и характер начальных реакций обычно весьма специфичны в отношении длины волны, а следовательно, и квантовой энергии излучения. Для протекания фотохимических процессов необходимо, чтобы излучение лежало в ультрафиолетовой области спектра. Радиохимические процессы возникают в результате поглощения излучений с высокой энергией, например рентгеновских, у- или катодных лучей, а также быстрых частиц, например протонов, а- и В-лучей, обычно носящих название ионизирующих излучений . В этом случае известная доля поглощенной энергии образует возбужденные молекулы или радикалы, остальная же часть приводит к образованию пар ионов, которые затем генерируют новые количества свободных радикалов и атомов. Радиохимические процессы характеризуются возникновением ионизации и результатами, которые сравнительно не зависят от энергии отдельной частицы, или кванта, но зависят от общего количества поглощенной энергии. Начальные процессы, протекающие при действии ионизирующих излучений, приводят к одновременному образованию заряженных и незаряженных частиц. Эти процессы являются гораздо более сложными, чем протекающие при фотохимическом возбуждении. Однако реакции, следующие за процессами возбуждения, обычно близки по характеру, причем они выражены тем более резко, чем выше энергия излучения. [c.54]


    Природа и количества различных образующихся молекул, скорости их образования, количества их на единицу поглощенной энергии и другие явления зависят от большого числа разных факторов, к которым относятся тип излучения (например, производится ли бомбардировка электронами или тяжелыми частицами), энергия отдельных частиц, интенсивность и длительность бомбардировки, распределение поглощения энергии в жидкости, отношение объемов жидкой и газовой фаз в реакционном сосуде и наличие или отсутствие следов растворенных веществ, например кислорода. В настоящее время отсутствует способ измерения числа ионных пар (положительный ион плюс электрон), образующихся на единицу количества ионизирующего излучения, поглощенного водой. Обычно предполагается, что около половины поглощенной энергии расходуется на образование молекул воды с возбужденными электронами, другая же половина энергии идет на образование ионных пар. Это соображение основано на предпосылке, что для образования одной ионной пары в жидкой воде требуется такое же количество энергии (т. е. 30—35 зв), как и в воздухе. Поскольку примерно половина этого количества энергии требуется на ионизацию одной молекулы воды, приходится принять, что другая половина расходуется на образование активированных молекул воды. Часть этих активированных молекул инактивируется затем за счет столкновений, другие могут образовать радикалы Н и ОН. Однако весьма вероятно, что, поскольку радикалы, возникшие за счет диссоциации активированной молекулы воды, находятся близко друг от друга, будет немедленно происходить их рекомбинация с образованием воды. Степень участия их в других реакциях неизвестна, но принимается, что она невелика. [c.61]

    Существенным недостатком теории Аррениуса является и то, что она не указывает причин, вызывающих ионизацию электролитов в растворах. Между тем, в процессе ионизации расходуется значительное количество энергии. В этом можно убедиться на примере такого типичного электролита как хлорид калия. Известно, что связь между атомами в молекуле хлорида калия электростатическая и в узлах его кристаллической решетки располагаются ионы калия и хлора. Энергию связи между ионами в отдельной молекуле можно представить в виде интеграла [c.33]

    Теорема Купманса не всегда плохо выполняется для комплексов переходных металлов. По причинам, которые не совсем ясны, она хорошо выполняется для N1(00) 4 [516]. Часто для отдельной молекулы удается измерить несколько потенциалов ионизации. Тогда возможны полуэмпирические расчеты по методу МО, которые идентифицируют каждый из этих потенциалов ионизации с энергиями отдельных орбиталей. К таким идентификациям следует относиться с большой осторожностью, поскольку точные расчеты в приближении ССП часто дают совершенно отличную интерпретацию [151]. Отнесение различных потенциалов ионизации подчас проводится на основании интенсивностей например, считается, что е-орбиталь дает интенсивность, в 2 раза превышающую интенсивность невырожденной орбитали. Такие выводы не оправданы. [c.270]

    При энергиях 5—7 кэВ сечения ионизации органических молекул пренебрежимо малы. Иная ситуация наблюдается при взаимодействии электронов с веществом в конденсированной фазе. В этом случае на электронный пучок возлагаются функции испаряющего агента и энергия электронного луча должна достигать 8—10 кэВ. Образец, помещенный в вакуумированный контейнер, нагревается электронным лучом до температуры, достаточной для его интенсивного испарения. При действии электронного пучка на образец происходит выделение растворенного в образце газа и продуктов диссоциации оксидов и, наконец, ионизация испаряющегося образца. Совокупность этих процессов определяет режим работы всей установки условия испарения, режим откачки системы, расположение отдельных частей установки. [c.226]

    Рассмотрим фториды элементов второго иериода. У фторидов таких элементов, как Р, О, Ы, С, В, Ве и Ы, наблюдается непрерывное изменение ионного характера связей. Ионный характер связей усиливается с увеличением разности между энергиями ионизации (см. табл. 16-П). Этот ионный характер связей обеспечивает существование электрического диполя в каждой связи. Молекулярный диполь определяется геометрической суммой дипольных моментов всех связей. Поскольку свойства молекулы в значительной степени зависят от молекулярного диполя, посмотрим, как можно судить о его величине, зная молекулярную архитектуру и ионный характер отдельных связей. Начнем рассмотрение с левой части периодической таблицы. [c.440]

    Передаче электрона от атома Ма к удаленному от него атому С1 соответствует переход от энергетического уровня А к уровню О. Расстояние между этими уровнями равно еУ —Есг, т. е. разности между энергией ионизации атома натрия и сродством атома хлора к электрону. Сильное кулоновское притяжение, возникающее при сближении ионов друг с другом (уровень О), приводит систему к минимуму Е, в котором силы притяжения уравновешиваются силами отталкивания. Энергетическая разность между уровнем А (отдельные атомы) и минимумом Е (ионная молекула) соответствует теплоте образования ионной молекулы из атомов. [c.43]


    До сих пор мы ограничивались рассмотрением сцинтилляций, получаемых под действием электронов с энергией 1 Мэе, которые производят только небольшое возбуждение и дают небольшую плотность ионизации на своем пути в сцинтилляторе. При такой малой плотности ионизации отдельные акты возбуждения и ионизации молекул отделены расстояниями в несколько молекул вдоль трека частицы, и взаимодействия между ними пренебрежимо малы. В этих условиях выход сцинтилляций Ь, т. е. величина энергии, отданной в виде флуоресценции, пропорциональна энергии частицы Е, растраченной в сцинтилляторе. Следовательно, для быстрых электронов [c.170]

    Бомбардировка молекул электронами с заданной энергией в сочетании с масс-спектрометрией позволяет решать многие важные теоретические вопросы определять потенциалы ионизации молекул, энергию диссоциации отдельных связей, сродство к электрону и т. д., без знания которых невозможно создание теоретических основ газовой электрохимии. [c.136]

    Для проверки применимости квазиравновесной теории может быть использован расчет частотного фактора как неизвестного параметра на основании наблюдаемого масс-спектра. Такой метод был предложен Кингом и Лонгом [ 1110]. Проверка теории состояла в выяснении, насколько полученный частотный фактор близок по своему значению для различных членов гомологического ряда и насколько он изменяется в зависимости от энергии ионизирующих электронов. Кинг и Лонг нашли, что при 70 эв частотные факторы, наблюдаемые для различных спектров, хорошо согласуются между собой, хотя и имеются затруднения. Однако при низких энергиях ионизирующих электронов [709] теория перестает быть справедливой при низких напряжениях выход ионов с высокой энергией активации значительно выше, чем предполагалось по расчету эти расхождения тем больше, чем ниже ионизирующее напряжение. Чтобы уменьшить ошибки расчета, частотный фактор следовало бы увеличить на несколько порядков по сравнению с его нормальным пределом (10 в секунду). Большой выход ионов с высокой энергией активации при низких ионизирующих напряжениях [193, 1110] указывает на то, что реакции диссоциации для таких процессов протекают быстрее, чем устанавливается квази-равновесное состояние. Такое же заключение было сделано на основании исследования кривых эффективности ионизации больших молекул [706]. Недостаток теории, которая предусматривает необходимость быстрого и полного распределения избыточной энергии по колебательным уровням, состоит в континууме электронных состояний молекулярного иона. Можно ожидать, что если энергия на 1—2 в выше основного состояния, то распределение электронных состояний будет представлять собой сильно вырожденные узкие полосы с малым наложением. Между состояниями может быть лишь несколько нерадиационных переходов, и осколочные ионы будут образовываться из каждого отдельного возбужденного состояния молекулярного иона. [c.257]

    Дело в том, что свойства молекулярных систем можно разбить на два класса одноэлектронные и коллективные. Одноэлектронными называют те свойства, которые в первом приближении связаны с поведением отдельных электронов (например, потенциалы ионизации, электронные спектры). Коллективные же свойства. уже в первом приближении связаны с поведением всех электронов молекулы. Примерами коллективных свойств могут служить полная энергия молекулы, суммарная энергия ее связей, дипольный момент, равновесные межъядерные расстояния. [c.209]

    Одноэлектронные свойства зависят от состояния отдельного электрона в молекуле, как, например, потенциал ионизации молекулы или энергия возбуждения электрона. Именно измерение этих свойств различными методами, в первую очередь методом фотоэлектронной спектроскопии, доказывает справедливость представления о делокализованных молекулярных орбиталях. По тому строгое рассмотрение таких важных одноэлектронных свойств молекул, как их спектры и потенциалы ионизации, возможно только на основании представлений о делокализованных МО [к-18]. [c.200]

    Основной формой существования водорода в космическом пространстве являются отдельные атомы Н. Ионизация их (по схеме Н = Н -4- е) имеет определенное значение для теплового баланса этого пространства. Возникает она (как и диссоциация молекулы Нг на атомы) в основном за счет лучистой энергии звезд а при обратных процессах рекомбинации (Н+ + е = Н и Н-ЬН = Нг) энергия выделяется главным образом в форме кинетической. Результатом является некоторое повышение температуры околозвездных областей космического пространства по сравнению с очень далекими от звезд. [c.118]

    Влияние введения электролитов на растворимость белков подробно рассмотрено в монографии Коуна и Эдсалля [136]. Его можно объяснить на основе теории, разработанной Кирквудом [182] для дипольных ионов. Даже несмотря на то что эти компоненты не несут какого-либо суммарного заряда, они притягиваются друг к другу вследствие тенденции их диполей к такой взаимной ориентации, при которой потенциальная энергия системы минимальна. Обнаружено, что другой причиной взаимного притяжения амфотерных компонентов в изоэлектрическом растворе является то, что состояние ионизации отдельных молекул подвержено флуктуациям, которые не зависят друг от друга, но стремятся в любое данное время создать на соседних молекулах амфолита суммарный заряд противоположного знака [183]. Согласно дипольному (или мультипольному взаимодействию и теории флуктуации зарядов, логарифм растворимости должен возрастать линейно с квадратным корнем ионной силы. Следует заметить, что по предположениям величина этого эффекта будет довольно не чувствительна к распределению ионогенных групп на поверхности молекулы белка. Некоторые белки, по традиции известные под названием глобулинов, в отсутствие обычных электролитов имеют чрезвычайно [c.79]

    Энергия излучения, переданная среде, расходуется на образование ионов (атомных и молекулярных), вторичных (выбитых) электронов с энергией, достаточной для ионизации еще неск. молекул среды (т. наз. энергетические, или 8-электроны), сверхвозбужденных состояний. Расстояние, на к-ром происходит каждая послед, ионизация, прогрессивно уменьшается, достигая неск. нм при потере энергии вторичным электроном до величины, меньшей потенциала ионизации молекул среды. Вторичные электроны, не производящие ионизации, имеют еще достаточно энергии для возбуждения молекул. Взаимод. их со средой приводит к появлению возбужденных состояний молекул и ионов и дaJ ьнeйшeмy снижению энергии вторичных электронов до нек-рой пороговой энергии электронного возбуждения Е . Электроны с энергией Ец < Е < кТ (< Г-тепловая энергия среды, постоянная Больцмана, Т-абс. т-ра) наз. электронами не-довозбуждения. В конденсир. фазах на физ. стадии происходит также образование коллективных возбуждений-плазмонов, за время существования к-рых (10 -10 с) энергия, составляющая от 15 до 25 эВ, локализуется на отдельных молекулах, в результате чего происходит ионизация последних или переход их в высоковозбужденные состояния. [c.152]

    Большинство элементов (почти 90%) при обычных температурах твердые это справедливо также и для большинства неорганических соединений. Известно, правда, что значительная часть важных реагентов — это жидкости, газы или растворы, но в целом они составляют малую долю неорганических соединений. Кроме того, хотя обычно химические реакции протекают в растворе или в газообразном состоянии, в большинстве случаев либо исходные реагирующие вещества, либо продукты, либо и те и другие являются твердыми телами. Химические реакции охватывают широкий круг взаимодействий от реакций между изолированными атомами или отдельными группами атомов (молекулами или комплексными ионами) и реакций, в которых твердое тело разрушается или возникает, до таких процессов, как коррозия металлов, когда твердый продукт образуется прямо на поверхности твердого реагента. Во всех случаях, когда кристаллическое вещество образуется или разрушается, энергетический баланс реакции включает энергию решетки кристалла. Обычный цикл Борна — Габера для реакции между твердым натрием и газообразным хлором с образованием твердого Na l дает простой пример взаимосвязи между теплотой диссоциации, энергией ионизации и сродством к электрону, энергией решетки и теплотой реакции. [c.12]

    В процессе ряда последовательных взаимодействий ионизирующего излучения с отдельными молекулами, входяпцши в клетку, происходит передача энергии клеточному веществу. Поскольку энергия, передаваемая молекулам при каждом взаимодейств1ш, относительно велика, то небольшое количество энергии, проникшее в тело в виде ионизирующего излучения, может вызвать значительное повреждение клеток. Когда заряженная частица (а- шш р-частица) проходит через вещество, ее электрическое поле взаимодействует с электронами атомов, возбуждая и ионизируя последние. Большая часть электронов, освобождающихся при начальной ионизации, обладает достаточной энергией, чтобы в свою очередь возбудить или ионизировать следующие атомы на своем пути. Поэтому процесс повреждения молекул локализован в области, где потеряла свою энергию входящая частица, вызывая возбуждение и ионизацию атомов. Возбуждение атома, возникшее при переходе одного из его электронов на более высокий энергетический уровень, приводит к увеличению его химической активности, а ионизация делает его еще более активным. [c.39]

    Если фотоп обладает большой энергией, то при в.заимодействии с по верхностью сублимационного льда энергия его расходуется не только на ионизацию частиц, с которыми он встречается, но и на разрушение кристаллических решеток сублимируемого вещества, т. е. на превращение их в отдельные молекулы с мгновенным испарением. Избыток неиспользованной энергии кванта расходуется на увеличение кинетической энергии испускаемого молекулой электрона. В ряде случаев освобожденный электрон получает кинетическую энергию, практически равную энергии кванта, и он может производить дальнейшую ионизацию. В свою очередь, ионы с большой энергией приводят к интенсификации процессов обезвоживания [113]. [c.191]

    Потенциал ионизации органических молекул тесно связан с классом соединений, к которому эти молекулы относятся, поскольку этот потенциал зависит от наличия способных к отщеплению электронов. Так, нанример, для ионизации циклогексана требуется энергия 10,3 0,2 эв, для бензола только 9,24 0,1 эв, а для ноликонденсированных ароматических молекул — еще меньшая энергия (эти данные взяты из книги Филда и Франклина [28], в которой приводится обширная сводка данных по потенциалам ионизации). Таким образом, определение потенциала ионизации может представлять интерес для классификации неизвестного соединения, и этот принцип был уже предложен, хотя и в несколько другой форме, для определения числа и характера замещающих групп в ароматических молекулах [21]. В общем случае для этой цели более пригоден ультрафиолетовый спектр, однако для некоторых смесей, содержащих различные компоненты с сильно перекрывающимися УФ-спектрами, даже приближенная оценка потенциалов ионизации отдельных соединений может дать весьма ценную информацию. [c.310]

    Аналогичную корреляцию можно провести между потенциалами полуволн реакций электроокисления и максимумами длинноволнового спектра поглощения органических соединений с сопряженными двойными связями [13—23]. С другой стороны, разность анодных потенциалов полуволн для обратимых реакций между отдельными членами ряда равна разности их энергии ионизации, которую можно рассчитать [14]. Поэтому, благодаря наличию линейной связи между потенциалом полуволны окисления и потенциалами ионизации для различных соединений, можно использовать полярографический метод для (вычисления потенциалов ионизации, непосредственное измерение которых затруднено [15—21]. Хеджес и Матсен [22], наоборот, предлагают расчетные значения потенциалов ионизации и полярографические потенциалы полуволн восстановления использовать для оценки энергии сольватации АЕ (сольв.) молекул и ионов в различных растворителях. [c.282]

    Энергия ионизации атома фосфора еще выше, чем у кремния. Поэтому неудивительно, что обычные формы фосфора представляют собой молекулярные кристаллы. Белый фосфор состоит из отдельных молекул 4 (рис. 20-2)( соединенных в твердом кристалле слабыми вандерваальсовыми силами. На основании электронной конфигурации атома фосфора можно объяснить состав и строение молекулы Р4. Фосфор имеет электронную конфигурацию 1з 2з 2р 3з 3р , и, так как Зр-орбиты заполнены лишь наполовину, можно предположить, что фосфор будет образовывать три ковалентные связи. Геометрически такая связь должна быть похожа на связь в аммиаке ЫНд, в котором три связи М—Н образуют пирамиду с треугольным основанием (см. стр. 438). Как показано на рис. 20-2, в молекуле Р4 каждый атом фосфора действительно образует три связи, и Каждый атом находится в одной из вершин пирамиды. [c.545]

    Здесь X — галоген, D — энергия диссоциации газообразной молекулы НХ, а Q — сумма потенциала ионизации водорода и электронного сродства галогена. Поскольку НС1, НВг и HI в растворе полностью диссоциированы, величина Qpa TB (НХ) является измеряемой теплотой растворения газообразного НХ. Таким образом, цикл приводит к строгому значению суммы раств(Н+)-ЬРраств(Х-). Однако оценить отдельно-Qpb TB(H+) можно лишь, вводя некоторые нетермодинамические соотношения, основанные на эксперименте или на теоретической модели (например, вводя соотношение между [c.33]

    Эти три метода — фото-, рентгеноэлектронная и рентгеновская спектроскопия являются в настоящее врехмя основными физическими методами изучения занятых электронных уровней в свободных молекулах и кристаллах. Совместное применение этих методов позволяет определить порядок следования уровней и их энергии ионизации, симметрию и состав волновой функции, связывающий или разрыхляющий характер уровня, наличие взаимодействия между отдельными орбиталями или связями в химическом соединении. Все эти характеристики представляют самостоятельный интерес и необходимы для глубокого понимания природы химической связи и совершенствования теоретических расчетов. С помощью этих экспериментальных данных можно, например, изучать электрон- [c.5]

    Если частица, подобная а-частице или электрону, с большой скоростью проходит через вещество, то энергия при электростатическом кулоновском взаимодействии распределяется между этой частицей, обладающей большой скоростью, и электронами среды. Энергия, полученная отдельными электронами, гораздо больше энергии, с которой они удерживаются в молекулах, и в результате происходит ионизация. Степень потери энергии заряженной частицей пропорциональна электронной плотности среды. Она увеличивается. по мере уменьшения скорости частицы, обладающей высокой скоростью. Если сравнип ь две частицы, имеющие одинаковую энергию, по различную массу, то более тяжелая частица обладает меньшей скоростью и потому теряет энергию в большей степени. Поэтому плотность ионов, образующихся вдоль пути а-частицы, в несколько тысяч раз больше плотности ионов вдоль пути электрона, обладающего такой же энергией. [c.703]

    Излучат. К. п. классифицируют по типам квантовых состояний, между к-рыми происходит переход. Электронные К.п, обусловлены изменением электронного распределения-переходами внеш. (валентных) электронов между орбиталями (типичные энергии я 2,6-10 Дж/моль, частоты излучения лежат в видимой и УФ областях спектра), ионизацией внутр. электронов (для элементов с зарядом ядра 2 т 10 А я 1,3 -10 Дж/моль, излучение в рентгеновском диапазоне), аннигиляцией электронно-позитронных пар (Д % 1,3 10 Дж/моль, излучение в /-диапазоне). При переходах из возбужденных электронных состояний в основное различают флуоресценцию (оба состояния, связанные К. п., имеют одинаковую мульти-метность) и фосфоресценцию (мультиплетность возбужденного состояния отличается от мультиплетности основного) (см. Люминесценция). Колебат. К. п. связаны с внутримол. процессами, сопровождающимися перестройкой ядерной подсистемы (Д % 1 10 -5-Ю Дж/моль, излучение в ИК диапазоне), вращат. К. п.-с из.менением вращат. состояний молекул (10-10 см я 1,2-10 -1,2 х X 10 Дж/моль, излучение в микроволновой и радиочастотной областях спектра). Как правило, в мол. системах при электронных К. п. происходит изменение колебат. состояний, поэтому соответствующие К. п. наз. электронно-колебательными. Отдельно выделяют К. п., связанные с изменением ориентации спина электрона или атомных ядер (эти переходы оказываются возможными благодаря расщеплению энергетич. уровней системы в магн. поле), изменением ориентации квадрупольного электрич. момента ядер в электрич. поле. Об использовании указанных К. п. в хим. анализе и для изучения структуры молекул см. Вращательные спектры. Колебательные спектры. Электронные спектры, Мёссбауэровская спектроскопия, Электронный парамагнитный резонанс, Ядерный магнитный резонанс, Ядерный квадрупольный резонанс. Рентгеновская спектроскопия. Фотоэлектронная спектроскопия. [c.368]


Смотреть страницы где упоминается термин Энергия ионизации отдельных молекул: [c.128]    [c.44]    [c.200]    [c.57]    [c.121]    [c.224]    [c.45]    [c.70]    [c.121]    [c.372]    [c.128]    [c.93]    [c.25]    [c.270]   
Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.84 ]

Лекции по общему курсу химии Том 1 (1962) -- [ c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия ионизации

Энергия молекул



© 2025 chem21.info Реклама на сайте